| Overall Statistics |
|
Total Trades 723 Average Win 2.99% Average Loss -1.50% Compounding Annual Return 40.166% Drawdown 68.200% Expectancy 0.773 Net Profit 8143.657% Sharpe Ratio 1.132 Probabilistic Sharpe Ratio 41.723% Loss Rate 41% Win Rate 59% Profit-Loss Ratio 1.99 Alpha 0.385 Beta 0.15 Annual Standard Deviation 0.354 Annual Variance 0.125 Information Ratio 0.765 Tracking Error 0.387 Treynor Ratio 2.674 Total Fees $971.71 |
"""
SEL(stock selection part)
Based on the 'Momentum Strategy with Market Cap and EV/EBITDA' strategy introduced by Jing Wu, 6 Feb 2018https://www.quantconnect.com/terminal/#live-view-tab
adapted and recoded by Jack Simonson, Goldie Yalamanchi, Vladimir, Peter Guenther, Leandro Maia and Simone Pantaleoni
https://www.quantconnect.com/forum/discussion/3377/momentum-strategy-with-market-cap-and-ev-ebitda/p1
https://www.quantconnect.com/forum/discussion/9678/quality-companies-in-an-uptrend/p1
https://www.quantconnect.com/forum/discussion/9632/amazing-returns-superior-stock-selection-strategy-superior-in-amp-out-strategy/p1
I/O(in & out part)
The Distilled Bear in & out algo
based on Dan Whitnable's 22 Oct 2020 algo on Quantopian.
Dan's original notes:
"This is based on Peter Guenther great “In & Out” algo.
Included Tentor Testivis recommendation to use volatility adaptive calculation of WAIT_DAYS and RET.
Included Vladimir's ideas to eliminate fixed constants
Help from Thomas Chang"
https://www.quantopian.com/posts/new-strategy-in-and-out
https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/
"""
from QuantConnect.Data.UniverseSelection import *
import math
import numpy as np
import pandas as pd
import scipy as sp
class EarningsFactorWithMomentum_InOut(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 2, 7) #Set Start Date
#self.SetEndDate(2020, 01, 01) #Set Start Date
self.cap = 5000
self.SetCash(self.cap)
self.averages = { }
res = Resolution.Hour
# Holdings
### 'Out' holdings and weights
self.BND1 = self.AddEquity('TLT', res).Symbol #TLT; TMF for 3xlev
self.HLD_OUT = {self.BND1: 1}
### 'In' holdings and weights (static stock selection strategy)
##### These are determined flexibly via sorting on fundamentals
##### In & Out parameters #####
# Feed-in constants
self.INI_WAIT_DAYS = 15 # out for 3 trading weeks
self.wait_days = self.INI_WAIT_DAYS
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('SPY', res).Symbol # market
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.AddEquity('XLI', res).Symbol # vs industrials
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.INDU, self.METL, self.USDX]
# Specific variables
self.DISTILLED_BEAR = 999
self.BE_IN = 999
self.BE_IN_PRIOR = 0
self.VOLA_LOOKBACK = 126
self.WAITD_CONSTANT = 85
self.DCOUNT = 0 # count of total days since start
self.OUTDAY = (-self.INI_WAIT_DAYS+1) # dcount when self.be_in=0, initial setting ensures trading right away
# set a warm-up period to initialize the indicator
self.SetWarmUp(timedelta(350))
##### Momentum & fundamentals strategy parameters #####
#self.UniverseSettings.Resolution = Resolution.Daily
self.UniverseSettings.Resolution = Resolution.Minute
self.AddUniverse(self.UniverseCoarseFilter, self.UniverseFundamentalsFilter)
self.num_screener = 100 # changed from 15
self.num_stocks = 5 # lowered from 10
self.formation_days = 126
self.lowmom = False
self.data = {}
self.setrebalancefreq = 20 # X days, update universe and momentum calculation
self.updatefinefilter = 0
self.symbols = None
self.reb_count = 0
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 30), # reduced time
self.rebalance_when_out_of_the_market
)
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.BeforeMarketClose('SPY', 0),
self.record_vars
)
# Setup daily consolidation
symbols = [self.MRKT] + self.FORPAIRS
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
# Warm up history
self.lookback = 100 # lowered from 252
self.history = self.History(symbols, self.lookback, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
self.update_history_shift()
# Benchmark = record SPY
self.spy = []
def UniverseCoarseFilter(self, coarse):
# Update at the beginning (by setting self.OUTDAY = -self.INI_WAIT_DAYS), every X days (rebalance frequency), and one day before waitdays are up
if not (((self.DCOUNT-self.reb_count)==self.setrebalancefreq) or (self.DCOUNT == self.OUTDAY + self.wait_days - 1)):
self.updatefinefilter = 0
return Universe.Unchanged
self.updatefinefilter = 1
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)]
# We are going to use a dictionary to refer the object that will keep the moving averages
for cf in selected:
symbol = cf.Symbol
if cf.Symbol not in self.averages:
self.averages[cf.Symbol] = SymbolDataVolume(cf.Symbol, 21, 5, 504)
# Updates the SymbolData object with current EOD price
avg = self.averages[cf.Symbol]
avg.update(cf.EndTime, cf.AdjustedPrice, cf.DollarVolume)
# Filter the values of the dict: we only want up-trending securities
values = list(filter(lambda sd: sd.smaw.Current.Value > 0, self.averages.values()))
values.sort(key=lambda x: (x.smaw.Current.Value), reverse=True)
# we need to return only the symbol objects
return [ x.symbol for x in values[:100] ]
def UniverseFundamentalsFilter(self, fundamental):
if self.updatefinefilter == 0:
return Universe.Unchanged
filtered_fundamental = [x for x in fundamental if (x.ValuationRatios.EVToEBITDA > 0)
and (x.EarningReports.BasicAverageShares.ThreeMonths > 0)
and float(x.EarningReports.BasicAverageShares.ThreeMonths) * x.Price > 2e9]
top = sorted(filtered_fundamental, key = lambda x: x.ValuationRatios.EVToEBITDA, reverse=True)[:self.num_screener]
self.symbols = [x.Symbol for x in top]
self.updatefinefilter = 0
self.reb_count = self.DCOUNT
return self.symbols
def OnSecuritiesChanged(self, changes):
for security in changes.RemovedSecurities:
symbol_data = self.data.pop(security.Symbol, None)
if symbol_data:
symbol_data.dispose()
for security in changes.AddedSecurities:
if security.Symbol not in self.data:
self.data[security.Symbol] = SymbolData(security.Symbol, self.formation_days, self)
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-self.lookback:]
self.update_history_shift()
def update_history_shift(self):
self.history_shift = self.history.rolling(11, center=True).mean().shift(60)
def derive_vola_waitdays(self):
volatility = np.log1p(self.history[[self.MRKT]].pct_change()).std() * np.sqrt(100) #lowered from 252
wait_days = int(volatility * self.WAITD_CONSTANT)
returns_lookback = int((1.0 - volatility) * self.WAITD_CONSTANT)
return wait_days, returns_lookback
def rebalance_when_out_of_the_market(self):
self.wait_days, returns_lookback = self.derive_vola_waitdays()
## Check for Bear
returns = self.history.pct_change(returns_lookback).iloc[-1]
silver_returns = returns[self.SLVA]
gold_returns = returns[self.GOLD]
industrials_returns = returns[self.INDU]
utilities_returns = returns[self.UTIL]
metals_returns = returns[self.METL]
dollar_returns = returns[self.USDX]
self.DISTILLED_BEAR = (((gold_returns > silver_returns) and
(utilities_returns > industrials_returns)) and
(metals_returns < dollar_returns)
)
# Determine whether 'in' or 'out' of the market
if self.DISTILLED_BEAR:
self.BE_IN = False
self.OUTDAY = self.DCOUNT
self.trade({**dict.fromkeys(self.Portfolio.Keys, 0), **self.HLD_OUT})
if (self.DCOUNT >= self.OUTDAY + self.wait_days):
self.BE_IN = True
# Update stock ranking/holdings, when swithing from 'out' to 'in' plus every X days when 'in' (set rebalance frequency)
if (self.BE_IN and not self.BE_IN_PRIOR) or (self.BE_IN and (self.DCOUNT==self.reb_count)):
self.rebalance()
self.BE_IN_PRIOR = self.BE_IN
self.DCOUNT += 1
def rebalance(self):
#self.Debug(str(self.Time) + "rebalance: be_in:" + str(self.be_in) + " flip_flag:" + str(self.flip_flag))
if self.symbols is None: return
symbols = self.calc_return(self.symbols)
weight = 0.99/len(symbols)
self.trade({**dict.fromkeys(symbols, weight),
**dict.fromkeys(list(dict.fromkeys(set([x.Symbol for x in self.Portfolio.Values if x.Invested]) - set(symbols))), 0),
**dict.fromkeys(self.HLD_OUT, 0)})
def calc_return(self, stocks):
ready = [self.data[symbol] for symbol in stocks if self.data[symbol].Roc.IsReady]
sorted_by_roc = sorted(ready, key=lambda x: x.Roc.Current.Value, reverse = not self.lowmom)
return [symbol_data.Symbol for symbol_data in sorted_by_roc[:self.num_stocks] ]
def trade(self, weight_by_sec):
buys = []
for sec, weight in weight_by_sec.items():
# Check that we have data in the algorithm to process a trade
if not self.CurrentSlice.ContainsKey(sec) or self.CurrentSlice[sec] is None:
continue
cond1 = weight == 0 and self.Portfolio[sec].IsLong
cond2 = weight > 0 and not self.Portfolio[sec].Invested
if cond1 or cond2:
quantity = self.CalculateOrderQuantity(sec, weight)
if quantity > 0:
buys.append((sec, quantity))
elif quantity < 0:
self.Order(sec, quantity)
for sec, quantity in buys:
self.Order(sec, quantity)
def record_vars(self):
self.spy.append(self.history[self.MRKT].iloc[-1])
spy_perf = self.spy[-1] / self.spy[0] * self.cap
self.Plot('Strategy Equity', 'SPY', spy_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue
self.Plot('Holdings', 'leverage', round(account_leverage, 2))
class SymbolData(object):
def __init__(self, symbol, roc_period, algorithm):
self.Symbol = symbol
self.Roc = RateOfChange(roc_period)
self.algorithm = algorithm
self.consolidator = algorithm.ResolveConsolidator(symbol, Resolution.Daily)
algorithm.RegisterIndicator(symbol, self.Roc, self.consolidator)
# Warm up ROC
history = algorithm.History(symbol, roc_period, Resolution.Daily)
if history.empty or 'close' not in history.columns:
return
for index, row in history.loc[symbol].iterrows():
self.Roc.Update(index, row['close'])
def dispose(self):
self.algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.consolidator)
class SymbolDataVolume(object):
def __init__(self, symbol, period, periodw, periodlt):
self.symbol = symbol
#self.tolerance = 1.01
self.tolerance = 0.95
self.fast = ExponentialMovingAverage(10)
self.slow = ExponentialMovingAverage(21)
self.is_uptrend = False
self.scale = 0
self.volume = 0
self.volume_ratio = 0
self.volume_ratiow = 0
self.volume_ratiol = 0
self.sma = SimpleMovingAverage(period)
self.smaw = SimpleMovingAverage(periodw)
self.smalt = SimpleMovingAverage(periodlt)
def update(self, time, value, volume):
self.volume = volume
if self.smaw.Update(time, volume):
# get ratio of this volume bar vs previous 10 before it.
if self.smaw.Current.Value != 0:
self.volume_ratiow = volume / self.smaw.Current.Value
if self.sma.Update(time, volume):
# get ratio of this volume bar vs previous 10 before it.
if self.sma.Current.Value != 0:
self.volume_ratio = self.smaw.Current.Value / self.sma.Current.Value
if self.smalt.Update(time, volume):
if self.smalt.Current.Value != 0 and self.smaw.Current.Value != 0:
self.volume_ratiol = self.smaw.Current.Value / self.smalt.Current.Value
if self.fast.Update(time, value) and self.slow.Update(time, value):
fast = self.fast.Current.Value
slow = self.slow.Current.Value
#self.is_uptrend = fast > slow * self.tolerance
self.is_uptrend = (fast > (slow * self.tolerance)) and (value > (fast * self.tolerance))
if self.is_uptrend:
self.scale = (fast - slow) / ((fast + slow) / 2.0)