| Overall Statistics |
|
Total Trades 152 Average Win 0.14% Average Loss -0.17% Compounding Annual Return -1.693% Drawdown 3.100% Expectancy -0.043 Net Profit -0.591% Sharpe Ratio -0.384 Probabilistic Sharpe Ratio 18.075% Loss Rate 47% Win Rate 53% Profit-Loss Ratio 0.80 Alpha -0.012 Beta 0.007 Annual Standard Deviation 0.03 Annual Variance 0.001 Information Ratio -0.841 Tracking Error 0.132 Treynor Ratio -1.648 Total Fees $0.00 |
from enum import Enum
from datetime import timedelta
import numpy as np
class BasicTemplateFrameworkAlgorithm(QCAlgorithm):
'''Basic template framework algorithm uses framework components to define the algorithm.'''
def Initialize(self):
''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
# Set requested data resolution
self.UniverseSettings.Resolution = Resolution.Hour
self.SetStartDate(2019,6,7) #Set Start Date
self.SetEndDate(2019,10,11) #Set End Date
self.SetCash(100000) #Set Strategy Cash
symbols = [ Symbol.Create("EURUSD", SecurityType.Forex, Market.FXCM) ]
# set algorithm framework models
self.SetUniverseSelection(ManualUniverseSelectionModel(symbols))
self.SetAlpha(RsiAlphaModel(period = 7,lower = 25,upper = 75,resolution = Resolution.Hour))
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(Resolution.Daily))
self.SetExecution(ImmediateExecutionModel())
self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.01))
PricePlot = Chart('Trade Plot')
PricePlot.AddSeries(Series('Price', SeriesType.Line, 0))
self.AddChart(PricePlot)
RSIPlot = Chart('RSI')
RSIPlot.AddSeries(Series('rsi', SeriesType.Line, 0))
self.AddChart(RSIPlot)
StatePlot = Chart('State')
StatePlot.AddSeries(Series('state', SeriesType.Line, 0))
self.AddChart(StatePlot)
def OnOrderEvent(self, orderEvent):
if orderEvent.Status == OrderStatus.Filled:
self.Debug("Purchased Stock: {0}".format(orderEvent.Symbol))
class RsiAlphaModel(AlphaModel):
'''Uses Wilder's RSI to create insights.
Using default settings, a cross over below 30 or above 70 will trigger a new insight.'''
def __init__(self,period = 14,lower = 25,upper = 75,resolution = Resolution.Daily):
'''Initializes a new instance of the RsiAlphaModel class
Args:
period: The RSI indicator period'''
self.period = period
self.lower = lower
self.upper = upper
self.resolution = resolution
self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), period)
self.symbolDataBySymbol ={}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{})'.format(self.__class__.__name__, period, resolutionString)
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
rsi = symbolData.RSI
previous_state = symbolData.State
state = self.GetState(rsi, previous_state)
if state != previous_state and rsi.IsReady:
if state == State.CrossOverAbove:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Up))
if state == State.CrossOverBelow:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Down))
symbolData.State = state
algorithm.Plot('Trade Plot', 'Price' , algorithm.Securities[symbol].Price)
algorithm.Plot('RSI' , 'rsi' , rsi.Current.Value)
algorithm.Plot('State' , 'state' , self.GetState(rsi, previous_state).value)
algorithm.Log(' Price:'+str(algorithm.Securities[symbol].Price)+' rsi:'+str(rsi.Current.Value)+' state:'+str(self.GetState(rsi, previous_state).value))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Cleans out old security data and initializes the RSI for any newly added securities.
Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
symbols = [ x.Symbol for x in changes.RemovedSecurities ]
if len(symbols) > 0:
for subscription in algorithm.SubscriptionManager.Subscriptions:
if subscription.Symbol in symbols:
self.symbolDataBySymbol.pop(subscription.Symbol, None)
subscription.Consolidators.Clear()
# initialize data for added securities
addedSymbols = [ x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol]
if len(addedSymbols) == 0: return
history = algorithm.History(addedSymbols, self.period, self.resolution)
for symbol in addedSymbols:
rsi = algorithm.RSI(symbol, self.period, MovingAverageType.Wilders, self.resolution)
if not history.empty:
ticker = SymbolCache.GetTicker(symbol)
if ticker not in history.index.levels[0]:
Log.Trace(f'RsiAlphaModel.OnSecuritiesChanged: {ticker} not found in history data frame.')
continue
for tuple in history.loc[ticker].itertuples():
rsi.Update(tuple.Index, tuple.close)
self.symbolDataBySymbol[symbol] = SymbolData(symbol, rsi)
def GetState(self, rsi, previous):
''' Determines the new state. This is basically cross-over detection logic that
includes considerations for bouncing using the configured bounce tolerance.'''
if rsi.Current.Value > self.upper:
return State.TrippedHigh
if rsi.Current.Value < self.lower:
return State.TrippedLow
if previous == State.TrippedLow:
if rsi.Current.Value > self.lower:# and rsi.Current.Value < self.lower+5
return State.CrossOverAbove
if previous == State.TrippedHigh:
if rsi.Current.Value < self.upper:#and rsi.Current.Value > self.upper-5
return State.CrossOverBelow
if previous == State.CrossOverBelow or previous == State.CrossOverAbove:
return State.Middle
return previous
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, rsi):
self.Symbol = symbol
self.RSI = rsi
self.State = State.Middle
class State(Enum):
'''Defines the state. This is used to prevent signal spamming and aid in bounce detection.'''
TrippedLow = -2
CrossOverAbove = -1
CrossOverBelow = 1
TrippedHigh = 2
Middle = 0