| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.744 Tracking Error 0.162 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# OHLC SymbolData
class OHLC_SymbolData(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2017, 4, 21)
self.SetEndDate(2022, 4, 20)
self.stock = self.AddEquity("SPY", Resolution.Daily).Symbol
def OnData(self, data):
O = float(SymbolData(self, self.stock).open.Current.Value)
H = float(SymbolData(self, self.stock).high.Current.Value)
L = float(SymbolData(self, self.stock).low.Current.Value)
C = float(SymbolData(self, self.stock).close.Current.Value)
self.Plot(self.stock, "Open", O)
self.Plot(self.stock, "High", H)
self.Plot(self.stock, "Low", L)
self.Plot(self.stock, "Close", C)
class SymbolData:
def __init__(self, algo, symbol):
self.open = algo.Identity(symbol, Resolution.Daily, Field.Open)
self.high = algo.Identity(symbol, Resolution.Daily, Field.High)
self.low = algo.Identity(symbol, Resolution.Daily, Field.Low)
self.close = algo.Identity(symbol, Resolution.Daily, Field.Close)
history = algo.History(symbol, 2, Resolution.Daily).iloc[-1]
self.open.Update(pd.to_datetime(history.name[1]), history.open)
self.high.Update(pd.to_datetime(history.name[1]), history.high)
self.low.Update(pd.to_datetime(history.name[1]), history.low)
self.close.Update(pd.to_datetime(history.name[1]), history.close)