| Overall Statistics |
|
Total Trades 7684 Average Win 0.14% Average Loss -0.15% Compounding Annual Return -3.685% Drawdown 27.400% Expectancy -0.041 Net Profit -21.176% Sharpe Ratio -0.561 Probabilistic Sharpe Ratio 0.001% Loss Rate 52% Win Rate 48% Profit-Loss Ratio 0.99 Alpha -0.029 Beta -0.004 Annual Standard Deviation 0.052 Annual Variance 0.003 Information Ratio -0.696 Tracking Error 0.168 Treynor Ratio 7.904 Total Fees $901.46 |
# https://quantpedia.com/strategies/reversal-during-earnings-announcements/
#
# The investment universe consists of stocks listed at NYSE, AMEX, and NASDAQ, whose daily price data are available at the CRSP database.
# Earnings-announcement dates are collected from Compustat. Firstly, the investor sorts stocks into quintiles based on firm size. Then he
# further sorts the stocks in the top quintile (the biggest) into quintiles based on their average returns in the 3-day window between
# t-4 and t-2, where t is the day of the earnings announcement. The investor goes long on the bottom quintile (past losers) and short on
# the top quintile (past winners) and holds the stocks during the 3-day window between t-1, t, and t+1. Stocks in the portfolios are
# weighted equally.
import fk_tools
import numpy as np
from collections import deque
class ReversalDuringEarningsAnnouncements(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2014, 1, 1)
self.SetCash(100000)
self.ear_period = 3
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
# Daily price data.
self.data = {}
# Monthly selected universe.
self.last_coarse = []
self.coarse_count = 1000
# Import earnigns data.
self.earnings_data = {}
# Available symbols from earning_dates.csv.
self.symbols = set()
self.first_date = None
csv_string_file = self.Download('data.quantpedia.com/backtesting_data/economic/earning_dates.csv')
lines = csv_string_file.split('\r\n')
for line in lines:
line_split = line.split(';')
date = datetime.strptime(line_split[0], "%Y-%m-%d").date()
if not self.first_date: self.first_date = date
self.earnings_data[date] = []
for i in range(1, len(line_split)):
symbol = line_split[i]
self.earnings_data[date].append(symbol)
self.symbols.add(symbol)
# EAR history for previous quarter used for statistics.
self.ear_previous_quarter = []
self.ear_actual_quarter = []
# 5 equally weighted brackets for traded symbols. - 20 symbols long , 20 for short, 3 days of holding.
self.trade_manager = fk_tools.TradeManager(self, 20, 20, 3)
self.month = 12
self.selection_flag = False
self.rebalance_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
symbol = security.Symbol
security.SetFeeModel(fk_tools.CustomFeeModel(self))
if symbol not in self.data:
self.data[symbol] = deque(maxlen = self.ear_period)
for security in changes.RemovedSecurities:
symbol = security.Symbol
if symbol in self.data:
del self.data[symbol]
def CoarseSelectionFunction(self, coarse):
if not self.selection_flag:
return Universe.Unchanged
selected = sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa' and x.Price > 5 and x.Symbol.Value in self.symbols],
key=lambda x: x.DollarVolume, reverse=True)
self.selection_flag = False
return [x.Symbol for x in selected[:self.coarse_count]]
def OnData(self, data):
date_to_lookup = (self.Time + timedelta(days=1)).date()
# Liquidate opened symbols after three days.
self.trade_manager.TryLiquidate()
ret_t4_t2 = {}
for symbol in self.data:
if symbol.Value == 'SPY': continue
# Store daily data for universe.
if self.Securities.ContainsKey(symbol):
price = self.Securities[symbol].Price
if price != 0:
self.data[symbol].append(price)
else:
# Append latest price as a next one in case there's 0 as price.
if len(self.data[symbol]) > 0:
last_price = self.data[-1]
self.data[symbol].append(last_price)
# Data is ready.
if len(self.data[symbol]) == self.data[symbol].maxlen:
if date_to_lookup in self.earnings_data:
# Earnings is in next two day for the symbol.
if symbol.Value in self.earnings_data[date_to_lookup]:
closes = [x for x in self.data[symbol]]
# Calculate t-4 to t-2 return.
ret = fk_tools.Return(closes)
ret_t4_t2[symbol] = ret
# Store return in this month's history.
self.ear_actual_quarter.append(ret)
# Wait until we have history data for previous three months.
if len(self.ear_previous_quarter) != 0:
# Sort by EAR.
ear_values = self.ear_previous_quarter
top_ear_quintile = np.percentile(ear_values, 80)
bottom_ear_quintile = np.percentile(ear_values, 20)
# Store symbol to set.
long = [x[0] for x in ret_t4_t2.items() if x[1] <= bottom_ear_quintile]
short = [x[0] for x in ret_t4_t2.items() if x[1] >= top_ear_quintile]
# Open new trades.
for symbol in long:
self.trade_manager.Add(symbol, True)
for symbol in short:
self.trade_manager.Add(symbol, False)
def Selection(self):
# There is no earnings data yet.
if self.Time.date() < self.first_date:
return
self.selection_flag = True
# Every three months.
if self.month % 3 == 0:
# Save quarter history.
self.ear_previous_quarter = [x for x in self.ear_actual_quarter]
self.ear_actual_quarter.clear()
self.month += 1
if self.month > 12:
self.month = 1import numpy as np
from scipy.optimize import minimize
sp100_stocks = ['AAPL','MSFT','AMZN','FB','BRKB','GOOGL','GOOG','JPM','JNJ','V','PG','XOM','UNH','BAC','MA','T','DIS','INTC','HD','VZ','MRK','PFE','CVX','KO','CMCSA','CSCO','PEP','WFC','C','BA','ADBE','WMT','CRM','MCD','MDT','BMY','ABT','NVDA','NFLX','AMGN','PM','PYPL','TMO','COST','ABBV','ACN','HON','NKE','UNP','UTX','NEE','IBM','TXN','AVGO','LLY','ORCL','LIN','SBUX','AMT','LMT','GE','MMM','DHR','QCOM','CVS','MO','LOW','FIS','AXP','BKNG','UPS','GILD','CHTR','CAT','MDLZ','GS','USB','CI','ANTM','BDX','TJX','ADP','TFC','CME','SPGI','COP','INTU','ISRG','CB','SO','D','FISV','PNC','DUK','SYK','ZTS','MS','RTN','AGN','BLK']
def MonthDiff(d1, d2):
return (d1.year - d2.year) * 12 + d1.month - d2.month
def Return(values):
return (values[-1] - values[0]) / values[0]
def Volatility(values):
values = np.array(values)
returns = (values[1:] - values[:-1]) / values[:-1]
return np.std(returns)
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quandl free data
class QuandlFutures(PythonQuandl):
def __init__(self):
self.ValueColumnName = "settle"
# Quandl short interest data.
class QuandlFINRA_ShortVolume(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'SHORTVOLUME' # also 'TOTALVOLUME' is accesible
# Quantpedia data
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['settle'] = float(split[1])
data.Value = float(split[1])
return data
# NOTE: Manager for new trades. It's represented by certain count of equally weighted brackets for long and short positions.
# If there's a place for new trade, it will be managed for time of holding period.
class TradeManager():
def __init__(self, algorithm, long_size, short_size, holding_period):
self.algorithm = algorithm # algorithm to execute orders in.
self.long_size = long_size
self.short_size = short_size
self.weight = 1 / (self.long_size + self.short_size)
self.long_len = 0
self.short_len = 0
# Arrays of ManagedSymbols
self.symbols = []
self.holding_period = holding_period # Days of holding.
# Add stock symbol object
def Add(self, symbol, long_flag):
# Open new long trade.
managed_symbol = ManagedSymbol(symbol, self.holding_period, long_flag)
if long_flag:
# If there's a place for it.
if self.long_len < self.long_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, self.weight)
self.long_len += 1
# Open new short trade.
else:
# If there's a place for it.
if self.short_len < self.short_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, - self.weight)
self.short_len += 1
# Decrement holding period and liquidate symbols.
def TryLiquidate(self):
symbols_to_delete = []
for managed_symbol in self.symbols:
managed_symbol.days_to_liquidate -= 1
# Liquidate.
if managed_symbol.days_to_liquidate == 0:
symbols_to_delete.append(managed_symbol)
self.algorithm.Liquidate(managed_symbol.symbol)
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
# Remove symbols from management.
for managed_symbol in symbols_to_delete:
self.symbols.remove(managed_symbol)
class ManagedSymbol():
def __init__(self, symbol, days_to_liquidate, long_flag):
self.symbol = symbol
self.days_to_liquidate = days_to_liquidate
self.long_flag = long_flag
class PortfolioOptimization(object):
def __init__(self, df_return, risk_free_rate, num_assets):
self.daily_return = df_return
self.risk_free_rate = risk_free_rate
self.n = num_assets # numbers of risk assets in portfolio
self.target_vol = 0.05
def annual_port_return(self, weights):
# calculate the annual return of portfolio
return np.sum(self.daily_return.mean() * weights) * 252
def annual_port_vol(self, weights):
# calculate the annual volatility of portfolio
return np.sqrt(np.dot(weights.T, np.dot(self.daily_return.cov() * 252, weights)))
def min_func(self, weights):
# method 1: maximize sharp ratio
return - self.annual_port_return(weights) / self.annual_port_vol(weights)
# method 2: maximize the return with target volatility
#return - self.annual_port_return(weights) / self.target_vol
def opt_portfolio(self):
# maximize the sharpe ratio to find the optimal weights
cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bnds = tuple((0, 1) for x in range(2)) + tuple((0, 0.25) for x in range(self.n - 2))
opt = minimize(self.min_func, # object function
np.array(self.n * [1. / self.n]), # initial value
method='SLSQP', # optimization method
bounds=bnds, # bounds for variables
constraints=cons) # constraint conditions
opt_weights = opt['x']
return opt_weights