| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
class CoarseFineFundamentalATRComboAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2014, 1, 1) #Set Start Date
self.SetEndDate(2016, 1, 1) #Set End Date
self.SetCash(50000) #Set Strategy Cash
# what resolution should the data *added* to the universe be?
self.UniverseSettings.Resolution = Resolution.Daily
# An indicator(or any rolling window) needs data(updates) to have a value
self.atr_window = 10
self.UniverseSettings.MinimumTimeInUniverse = self.atr_window
self.SetWarmUp(self.atr_window)
# this add universe method accepts two parameters:
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
# Set dictionary of indicators
self.indicators = {}
self.__numberOfSymbols = 00
self.__numberOfSymbolsFine = 10
def OnData(self, data):
for symbol in self.universe:
# is symbol iin Slice object? (do we even have data on this step for this asset)
if not data.ContainsKey(symbol):
continue
#if data.ContainsKey(symbol):
# self.indicators[symbol].update_value(self.Time, data[symbol].Price)
# new symbol? setup indicator object. Then update
if symbol not in self.indicators:
self.indicators[symbol] = SymbolData(symbol, self, self.atr_window)
# update by bar
#self.indicators[symbol].update_bar(data[symbol])
#update by value
#if data.ContainsKey(symbol):
# self.indicators[symbol].update_value(self.Time, data[symbol].Price)
#self.indicators[symbol].update_value(self.Time, data[symbol].Price)
if self.IsWarmingUp: continue
self.Log(str(symbol) + " : " + str(self.indicators[symbol].get_atr()))
#self.Log("SYMBOL : ".format(symbol.Price))
self.Log("PRICE : {}".format(str(self.Securities[symbol].Price)))
#self.Log("PRICE : ".format(self.Securities[symbol].Price.Current.Value))
#self.Log("PRICE : ".format(self.Securities.UniverseManager.Values[symbol]))
# now you can use logic to trade, random example:
lowerband = self.indicators[symbol].get_atr()
upperband = self.indicators[symbol].get_atr2()
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def CoarseSelectionFunction(self, coarse):
# sort descending by daily dollar volume
sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)
# return the symbol objects of the top entries from our sorted collection
return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ]
# sort the data by P/E ratio and take the top 'NumberOfSymbolsFine'
def FineSelectionFunction(self, fine):
# sort descending by P/E ratio
sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.FCFYield, reverse=False)
# resulting symbols
self.universe = [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ]
# take the top entries from our sorted collection
return self.universe
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
# liquidate removed securities
for security in changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
# clean up
del self.indicators[security.Symbol]
class SymbolData(object):
def __init__(self, symbol, context, window):
self.symbol = symbol
"""
I had to pass ATR from outside object to get it to work, could pass context and use any indica
var atr = ATR(Symbol symbol, int period, MovingAverageType type = null, Resolution resolution = null, Func`2[Data.IBaseData,Data.Market.IBaseDataBar] selector = null)
"""
self.window = window
#self.indicator = context.EMA(symbol, self.window)
#self.indicator = context.BB(symbol, self.window)
self.indicator = context.BB(symbol,12,2,MovingAverageType.Simple,Resolution.Daily)
self.indicator2 = context.BB(symbol,12,1,MovingAverageType.Simple,Resolution.Daily)
self.atr = 0.0
"""
Runtime Error: Python.Runtime.PythonException: NotSupportedException : AverageTrueRange does not support Update(DateTime, decimal) method overload. Use Update(IBaseDataBar) instead.
"""
def update_bar(self, bar):
self.indicator.Update(bar)
def update_value(self, time, value):
self.indicator.Update(time, value)
def get_atr(self):
#return self.indicator.Current.Value
return self.indicator.LowerBand.Current.Value
def get_atr2(self):
#return self.indicator.Current.Value
return self.indicator2.UpperBand.Current.Value# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System.Core")
AddReference("System.Collections")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")
from System import *
from System.Collections.Generic import List
from QuantConnect import *
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Data.UniverseSelection import *
### <summary>
### Demonstration of using coarse and fine universe selection together to filter down a smaller universe of stocks.
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="universes" />
### <meta name="tag" content="coarse universes" />
### <meta name="tag" content="fine universes" />
class CoarseFineFundamentalComboAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2014,01,06) #Set Start Date
self.SetEndDate(2014,01,07) #Set End Date
self.SetCash(50000) #Set Strategy Cash
# what resolution should the data *added* to the universe be?
self.UniverseSettings.Resolution = Resolution.Daily
# this add universe method accepts two parameters:
# - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
# - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol>
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
# Set dictionary of indicators
self.indicator = {}
self.__numberOfSymbols = 100
self.__numberOfSymbolsFine = 5
self._changes = SecurityChanges.None
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def CoarseSelectionFunction(self, coarse):
# sort descending by daily dollar volume
sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)
# return the symbol objects of the top entries from our sorted collection
return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ]
# sort the data by P/E ratio and take the top 'NumberOfSymbolsFine'
def FineSelectionFunction(self, fine):
# sort descending by P/E ratio
sortedByPeRatio = sorted(fine, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=False)
# Here we want to get our inititialized indicator
# We are going to use a dictionary to refer the object that will keep the moving averages
for cf in fine:
if cf.Symbol not in self.indicator:
self.indicator[cf.Symbol] = SymbolData(cf.Symbol)
# Updates the SymbolData object with current EOD price
avg = self.indicator[cf.Symbol]
avg.update(cf.EndTime, cf.Price)
# take the top entries from our sorted collection
return [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ]
def OnData(self, data):
# liquidate removed securities
for security in self._changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
# Set dictionary of indicators
#self.indicator = {}
self.Log("SECS : ".format(self._changes.AddedSecurities))
# Create indicator & check Price
for security in self._changes.AddedSecurities:
self.indicator[security.Symbol] = self.ATR(security.Symbol, 5, Resolution.Daily)
#self.Log("SECURITY : ".format(self.Securities[security.Symbol]))
self.Log("SECURITY : ".format(security.Symbol))
#self.Log("ATR : ".format(self.indicator[security.Symbol].AverageTrueRange.Current.Value))
self.Log("PRICE : ".format(self.Securities[security.Symbol].Price))
#def OnSecuritiesChanged(self, changes):
#self._changes = changes
#self._changes = SecurityChanges.None;
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
self._changes = changes
class SymbolData(object):
def __init__(self, symbol):
self.symbol = symbol
self.indicator = ExponentialMovingAverage(100)
#self.indicator = AverageTrueRange(5)
#self.indicator = BollingerBands(5)
self.scale = 0
def update(self, time, value):
if self.indicator.Update(time, value):
indicator = self.indicator.Current.Value