| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
//https://github.com/QuantConnect/Lean/blob/master/Algorithm.CSharp/EmaCrossUniverseSelectionAlgorithm.cs
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// 1. adding SMA , IN LINQ
/// </summary>
public class FindValue1 : QCAlgorithm
{
private const int _numberOfSymbolsCoarse = 100;
private const int _numberOfSymbolsFine = 5;
private const decimal _investmentAmt = .2m;
private const int _fastPeriod = 20;
private const int _slowPeriod = 50;
private const decimal _tolerance = 0.01m;
private SecurityChanges _changes = SecurityChanges.None;
//private Dictionary<string, SymbolData> _symbolDataBySymbol;
private readonly ConcurrentDictionary<Symbol, SelectionData> _averages = new ConcurrentDictionary<Symbol, SelectionData>();
// class used to improve readability of the coarse selection function
private class SelectionData
{
public readonly SimpleMovingAverage Fast;
public readonly SimpleMovingAverage Slow;
public SelectionData()
{
Fast = new SimpleMovingAverage(_fastPeriod);
Slow = new SimpleMovingAverage(_slowPeriod);
}
// computes an object score of how much large the fast is than the slow
public decimal ScaledDelta
{
get { return (Fast - Slow)/((Fast + Slow)/2m); }
}
// updates the indicators, returning true when they're both ready
public bool Update(DateTime time, decimal value)
{
return Fast.Update(time, value) && Slow.Update(time, value);
}
}
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2018, 04, 01);
SetEndDate(2018, 06, 01);
SetCash(25000);
AddUniverse(CoarseSelectionFunction, FineSelectionFunction);
}
public IEnumerable<Symbol> CoarseSelectionFunction(IEnumerable<CoarseFundamental> coarse)
{
return (from cf in coarse
// grab the SelectionData instance for this symbol
let avg = _averages.GetOrAdd(cf.Symbol, sym => new SelectionData())
where avg.Update(cf.EndTime, cf.AdjustedPrice)
where cf.HasFundamentalData
where cf.Price < avg.Slow
orderby cf.Price - avg.Slow
select cf.Symbol).Take(_numberOfSymbolsCoarse);
}
// sort the data by P/E ratio and take the top 'NumberOfSymbolsFine'
public IEnumerable<Symbol> FineSelectionFunction(IEnumerable<FineFundamental> fine)
{
// sort descending by P/E ratio
var ordered = fine.OrderByDescending(x => x.ValuationRatios.PERatio);
// take the top entries from our sorted collection
var filtered = ordered.Take(_numberOfSymbolsFine);
// we need to return only the symbol objects
return filtered.Select(x => x.Symbol);
}
//Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol.
public void OnData(TradeBars data)
{
// if we have no changes, do nothing
if (_changes == SecurityChanges.None) return;
// liquidate removed securities
foreach (var security in _changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
Debug("Liquidated Stock: " + security.Symbol.Value);
}
}
// allocate each security in our universe if Price < SLOW SMA
foreach (var security in _changes.AddedSecurities)
{
SetHoldings(security.Symbol, _investmentAmt);
Debug("Purchased Stock: " + security.Symbol.Value);
}
_changes = SecurityChanges.None;
}
// this event fires whenever we have changes to our universe
public override void OnSecuritiesChanged(SecurityChanges changes)
{
_changes = changes;
if (changes.AddedSecurities.Count > 0)
{
Debug("Securities added: " + string.Join(",", changes.AddedSecurities.Select(x => x.Symbol.Value)));
}
if (changes.RemovedSecurities.Count > 0)
{
Debug("Securities removed: " + string.Join(",", changes.RemovedSecurities.Select(x => x.Symbol.Value)));
}
}
}
public class SymbolData
{
public Security Security { get; set; }
public Symbol Symbol => Security.Symbol;
public SimpleMovingAverage Fast { get; set; }
public SimpleMovingAverage Slow { get; set; }
//public bool FastIsOverSlow { get; set; }
//public bool SlowIsOverFast => !FastIsOverSlow;
}
}