| Overall Statistics |
|
Total Trades 729 Average Win 0.41% Average Loss -0.36% Compounding Annual Return 7.258% Drawdown 9.000% Expectancy 0.517 Net Profit 101.443% Sharpe Ratio 0.857 Loss Rate 29% Win Rate 71% Profit-Loss Ratio 1.13 Alpha -0.037 Beta 5.547 Annual Standard Deviation 0.085 Annual Variance 0.007 Information Ratio 0.625 Tracking Error 0.085 Treynor Ratio 0.013 Total Fees $741.20 |
from clr import AddReference
AddReference("System.Core")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Data.UniverseSelection import *
import decimal as d
from datetime import datetime, timedelta
from decimal import Decimal
import numpy as np
class ProtectiveAssetAllocationAlgo(QCAlgorithm):
def Initialize(self):
self.SetCash(25000)
self.SetStartDate(2008,1,1)
##Parameters for algorithm
self.lookback = 4 ##Lookback in months
self.protection = 2 ##Protection factor = 0(low), 1, 2 (high)
self.topM = 6 ##topM is the max number of equities
self.n_levels = 2 ##number of discrete levels for bond_fraction (>=2)
self.SafetySymbols = ["IEF"] ##risk free asset to move into for protection
self.N_safe = int(len(self.SafetySymbols))
# these are the growth symbols we"ll rotate through
self.GrowthSymbols =["SPY", "QQQ", "IWM",
"VGK", "EWJ", "EEM",
"VNQ", "DBC", "GLD",
"HYG", "LQD", "TLT"]
self.N_eq = len(self.GrowthSymbols)
# these are the safety symbols we go to when things are looking bad for growth
self.AddSecurity(SecurityType.Equity, "IEF", Resolution.Minute)
# we'll hold some computed data in these guys
self.SymbolData = []
for symbol in list(self.GrowthSymbols):
self.AddSecurity(SecurityType.Equity, symbol, Resolution.Minute)
self.lookbackMovingAverage = self.SMA(symbol, 21*self.lookback, Resolution.Daily)
self.SymbolData.append([symbol, self.lookbackMovingAverage])
self.SetWarmup(21*self.lookback+1)
self.Schedule.On(self.DateRules.MonthStart("SPY"),
self.TimeRules.At(9,45),
Action(self.Rebalance))
def OnData(self, data):
pass
def Rebalance(self):
#
# poll the Growth Symbols set to determine the number of assets with positive momentum
#
n = 0
for i in range(self.N_eq):
price = self.Securities[self.SymbolData[i][0]].Price
sma = self.SymbolData[i][1].Current.Value
if price > sma: n+=1
# Calculate the bond fraction based on N_eq, prot, and n
# This is the portion to be invested in safe harbor
# Calculate equity fraction and weight per equity (frac_eq, w_eq)
# Limit bond_fraction to a discrete number of levels (n_levels >=2)
n1 = int(int(self.protection) * int(self.N_eq) / 4.0)
bond_fraction = float(min(1.0, float(float(self.N_eq) - float(n)) / float(float(self.N_eq) - float(n1))))
#n_steps = float(self.n_levels) - 1.0
#bond_fraction = float(bond_fraction*n_steps)/n_steps
w_safe = float(bond_fraction)
self.Log("Safe Weight "+str(w_safe))
#
# calculate the MOM for each equity
# determine the number of equities to be purchases
#
MOM = {}
N = 0
for i in range(self.N_eq):
price = self.Securities[self.SymbolData[i][0]].Price
sma = self.SymbolData[i][1].Current.Value
MOM[self.SymbolData[i][0]] = (price / sma) - 1
if MOM[self.SymbolData[i][0]] > 0.0: N+=1
frac_eq = float(1.0 - w_safe)
n_eq = min(N, self.topM)
w_eq = 0.0
if N > 0: w_eq = float(float(frac_eq) / float(n_eq))
mom_threshold = sorted(MOM.values(), reverse=True)[n_eq - 1]
if frac_eq > 0.0:
for i in range(self.N_eq):
symbol = self.SymbolData[i][0]
if MOM[symbol] >= float(mom_threshold):
self.SetHoldings(symbol, w_eq)
else:
if self.Portfolio[symbol].HoldStock:
self.Liquidate(symbol)
self.SetHoldings(self.SafetySymbols[0], w_safe)
else:
for i in range(self.N_eq):
symbol = self.SymbolData[i][0]
if self.Portfolio[symbol].HoldStock:
self.Liquidate(symbol)
self.SetHoldings(self.SafetySymbols[0], 1.0)