| Overall Statistics |
|
Total Orders 569 Average Win 2.29% Average Loss -1.28% Compounding Annual Return 57.091% Drawdown 40.900% Expectancy 0.704 Start Equity 1000000 End Equity 9733221.76 Net Profit 873.322% Sharpe Ratio 1.318 Sortino Ratio 1.468 Probabilistic Sharpe Ratio 66.170% Loss Rate 39% Win Rate 61% Profit-Loss Ratio 1.80 Alpha 0.303 Beta 1.15 Annual Standard Deviation 0.312 Annual Variance 0.097 Information Ratio 1.314 Tracking Error 0.242 Treynor Ratio 0.358 Total Fees $21480.27 Estimated Strategy Capacity $360000000.00 Lowest Capacity Asset LLY R735QTJ8XC9X Portfolio Turnover 6.14% |
#region imports
from AlgorithmImports import *
import numpy as np
from collections import deque
import statsmodels.api as sm
import statistics as stat
import pickle
#endregion
class Q2PlaygroundAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019, 3, 1) # Set Start Date
self.SetEndDate(2024, 6, 1) # Set End Date
self.SetCash(1000000) # Set Strategy Cash
self.SetSecurityInitializer(BrokerageModelSecurityInitializer(
self.BrokerageModel, FuncSecuritySeeder(self.GetLastKnownPrices)
))
#################################################################
self.universe_settings.resolution = Resolution.DAILY
self._momp = {} # Dict of Momentum indicator keyed by Symbol
self._lookback = 252 # Momentum indicator lookback period
self._num_coarse = 200 # Number of symbols selected at Coarse Selection
self._num_fine = 70 # Number of symbols selected at Fine Selection
self._num_long = 5 # Number of symbols with open positions
self._month = -1
self._rebalance = False
self.current_holdings = set() # To track current holdings
self.add_universe(self._coarse_selection_function, self._fine_selection_function)
def _coarse_selection_function(self, coarse):
'''Drop securities which have no fundamental data or have too low prices.
Select those with highest by dollar volume'''
if self._month == self.time.month:
return Universe.UNCHANGED
self._rebalance = True
self._month = self.time.month
selected = sorted([x for x in coarse if x.has_fundamental_data and x.price > 5],
key=lambda x: x.dollar_volume, reverse=True)
return [x.symbol for x in selected[:self._num_coarse]]
def _fine_selection_function(self, fine):
'''Select security with highest market cap'''
selected = sorted(fine, key=lambda f: f.market_cap, reverse=True)
return [x.symbol for x in selected[:self._num_fine]]
def on_data(self, data):
# Update the indicator
for symbol, mom in self._momp.items():
mom.update(self.time, self.securities[symbol].close)
if not self._rebalance:
return
# Selects the securities with highest momentum
sorted_mom = sorted([k for k,v in self._momp.items() if v.is_ready],
key=lambda x: self._momp[x].current.value, reverse=True)
selected = sorted_mom[:self._num_long]
new_holdings = set(selected)
# Only rebalance if the new selection is different from current holdings
if new_holdings != self.current_holdings:
if len(selected) > 0:
optimal_weights = self.optimize_portfolio(selected)
self.adjust_portfolio(optimal_weights, selected)
self.current_holdings = new_holdings
self._rebalance = False
def on_securities_changed(self, changes):
# Clean up data for removed securities and Liquidate
for security in changes.removed_securities:
symbol = security.symbol
if self._momp.pop(symbol, None) is not None:
self.liquidate(symbol, 'Removed from universe')
for security in changes.added_securities:
if security.symbol not in self._momp:
self._momp[security.symbol] = MomentumPercent(self._lookback)
# Warm up the indicator with history price if it is not ready
added_symbols = [k for k,v in self._momp.items() if not v.is_ready]
history = self.history(added_symbols, 1 + self._lookback, Resolution.DAILY)
history = history.close.unstack(level=0)
for symbol in added_symbols:
ticker = symbol.id.to_string()
if ticker in history:
for time, value in history[ticker].dropna().items():
item = IndicatorDataPoint(symbol, time.date(), value)
self._momp[symbol].update(item)
def optimize_portfolio(self, selected_symbols):
short_lookback = 63
returns = self.history(selected_symbols, short_lookback, Resolution.DAILY)['close'].unstack(level=0).pct_change().dropna()
n_assets = len(selected_symbols)
n_portfolios = 1000
results = np.zeros((3, n_portfolios))
weights_record = []
for i in range(n_portfolios):
weights = np.random.random(n_assets)
weights /= np.sum(weights)
portfolio_return = np.sum(returns.mean() * weights) * short_lookback
portfolio_stddev = np.sqrt(np.dot(weights.T, np.dot(returns.cov() * short_lookback, weights)))
downside_stddev = np.sqrt(np.mean(np.minimum(0, returns).apply(lambda x: x**2, axis=0).dot(weights)))
sortino_ratio = portfolio_return / downside_stddev
results[0,i] = portfolio_return
results[1,i] = portfolio_stddev
results[2,i] = sortino_ratio
weights_record.append(weights)
best_sortino_idx = np.argmax(results[2])
return weights_record[best_sortino_idx]
def adjust_portfolio(self, weights, selected):
# First liquidate all positions
for symbol in self.Portfolio.Keys:
self.Liquidate(symbol)
# Set holdings based on the optimal weights
for i, symbol in enumerate(selected):
self.SetHoldings(symbol, weights[i])