| Overall Statistics |
|
Total Trades 12 Average Win 0% Average Loss 0% Compounding Annual Return 0.653% Drawdown 0.200% Expectancy 0 Net Profit 0.057% Sharpe Ratio 1.448 Probabilistic Sharpe Ratio 55.967% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.003 Beta 0.017 Annual Standard Deviation 0.004 Annual Variance 0 Information Ratio -6.322 Tracking Error 0.076 Treynor Ratio 0.3 Total Fees $0.00 |
class CommodityAlphaModel(AlphaModel):
def __init__(self, period):
self.period = period
self.resolution = Resolution.Daily
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), self.period)
self.symbolData = {}
def Update(self, context, data):
insights = []
for symbol, symbolData in self.symbolData.items():
if not context.Portfolio[symbol].Invested:
if symbolData.CanEmit:
if data.ContainsKey(symbol):
close = symbolData.QuoteBar.Close
highChannel = symbolData.Channel.UpperBand.Current.Value
lowChannel = symbolData.Channel.LowerBand.Current.Value
if close >= highChannel:
direction = InsightDirection.Up
insights.append(Insight.Price(symbol, self.predictionInterval, direction, None, None))
elif close <= lowChannel:
direction = InsightDirection.Down
insights.append(Insight.Price(symbol, self.predictionInterval, direction, None, None))
return insights
def OnSecuritiesChanged(self, context, changes):
for removed in changes.RemovedSecurities:
symbol = removed.Symbol
if removed in self.symbolData:
symbolData = self.symbolData.pop(symbol, None)
if symbolData is not None:
symbolData.RemoveConsolidators(context)
# initialize data for added securities
symbols = [ x.Symbol for x in changes.AddedSecurities ]
history = context.History(symbols, self.period, self.resolution)
if history.empty: return
tickers = history.index.levels[0]
context.Debug("{} -- {} Added to Alpha Model".format(context.Time, [str(added.Symbol) for added in changes.AddedSecurities]))
for added in changes.AddedSecurities:
symbol = added.Symbol
if symbol not in self.symbolData:
context.Debug("{} -- {} Added to Alpha Model Symbol Data".format(context.Time, str(symbol)))
data = SymbolData(context, added, self.period)
self.symbolData[symbol] = data
data.RegisterIndicators(context, self.resolution)
if symbol not in tickers:
continue
else:
data.WarmUpIndicators(history.loc[symbol])
class SymbolData:
def __init__(self, context, security, lookback):
self.context = context
self.Security = security
self.Symbol = security.Symbol
self.Channel = DonchianChannel(self.Symbol, 20, Resolution.Daily)
self.Consolidator = None
self.QuoteBar = None
self.Previous = None
self.print = True
def RegisterIndicators(self, context, resolution):
self.Consolidator = context.ResolveConsolidator(self.Symbol, Resolution.Daily)
self.Consolidator.DataConsolidated += self.OnDataConsolidated
context.RegisterIndicator(self.Symbol, self.Channel, self.Consolidator)
context.Debug("Indicator registered for {} @ {}".format(self.Symbol, context.Time))
def OnDataConsolidated(self, sender, bar):
if self.print:
self.context.Debug("{} -- Data Consol. for {}: {}, Ending: {}".format(self.context.Time, self.Symbol, bar.Close, bar.EndTime))
self.print = False
self.QuoteBar = bar
@property
def CanEmit(self):
# this will be getting checked at a higher freq. than the consolidator, check if a new Daily bar is available
if self.Previous == self.QuoteBar:
return False
self.Previous = self.QuoteBar
return self.Channel.IsReady
def RemoveConsolidators(self, context):
if self.Consolidator is not None:
conext.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator)
def WarmUpIndicators(self, history):
for index, tuple in history.iterrows():
tradeBar = TradeBar()
tradeBar.Close = tuple['close']
self.Channel.Update(tradeBar)class CommodityPortfolioConstructionModel(PortfolioConstructionModel):
def CreateTargets(self, context, insights):
targets = []
for insight in insights:
targets.append(PortfolioTarget(insight.Symbol, insight.Direction))
return targetsfrom Universe import CommodityUniverseModel
from Alpha import CommodityAlphaModel
from Portfolio import CommodityPortfolioConstructionModel
# from Execution import CommodityExecutionModel
class CommodityTrading(QCAlgorithm):
def Initialize(self):
# Set Start Date so that backtest has 5+ years of data
self.SetStartDate(2018, 1, 1)
self.SetEndDate(2018, 2, 1)
# No need to set End Date as the final submission will be tested
# up until the review date
# Set $100k Strategy Cash to trade significant AUM
self.SetCash(100000)
# Use the Alpha Streams Brokerage Model, developed in conjunction with
# funds to model their actual fees, costs, etc.
# Please do not add any additional reality modelling, such as Slippage, Fees, Buying Power, etc.
# self.SetBrokerageModel(AlphaStreamsBrokerageModel())
self.SetExecution( ImmediateExecutionModel() )
# self.SetPortfolioConstruction( EqualWeightingPortfolioConstructionModel() )
self.SetPortfolioConstruction( CommodityPortfolioConstructionModel() )
self.AddAlpha( CommodityAlphaModel(period=20) )
self.UniverseSettings.Resolution = Resolution.Minute
self.AddUniverseSelection( CommodityUniverseModel() )
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
# if not self.Portfolio.Invested:
# self.SetHoldings("SPY", 1)from QuantConnect import *
from Selection.ManualUniverseSelectionModel import ManualUniverseSelectionModel
class CommodityUniverseModel(ManualUniverseSelectionModel):
def __init__(self):
metals = ["XAUUSD", "XAGUSD", "XCUUSD", "XPDUSD", "XPTUSD"]
fuels = ["WTICOUSD", "BCOUSD", "NATGASUSD"]
agri = ["SOYBNUSD", "CORNUSD", "WHEATUSD", "SUGARUSD"]
universe = metals + fuels + agri
super().__init__([Symbol.Create(x, SecurityType.Cfd, Market.Oanda) for x in universe])