| Overall Statistics |
|
Total Trades 32 Average Win 3.11% Average Loss -3.53% Compounding Annual Return -9.361% Drawdown 40.400% Expectancy -0.123 Net Profit -6.080% Sharpe Ratio -0.045 Probabilistic Sharpe Ratio 17.851% Loss Rate 53% Win Rate 47% Profit-Loss Ratio 0.88 Alpha -0.031 Beta 0.07 Annual Standard Deviation 0.359 Annual Variance 0.129 Information Ratio -0.624 Tracking Error 0.377 Treynor Ratio -0.23 Total Fees $116.46 |
import QuantConnect
from datetime import datetime, timedelta
from QuantConnect.Data.Custom.SEC import *
class SECReport8KAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019, 1, 1)
self.SetEndDate(2019, 8, 21)
self.SetCash(100000)
self.UniverseSettings.Resolution = Resolution.Minute
self.AddUniverseSelection(CoarseFundamentalUniverseSelectionModel(self.CoarseSelector))
#Request underlying equity data.
ibm = self.AddEquity("IBM", Resolution.Minute).Symbol
# Add news data for the underlying IBM asset
earningsFiling = self.AddData(SECReport10Q, ibm).Symbol
# Request 120 days of history with the SECReport10Q IBM custom data Symbol
history = self.History(SECReport10Q, earningsFiling, 120, Resolution.Daily)
# Count the number of items we get from our history request
self.Debug(f"We got {len(history)} items from our history request")
def CoarseSelector(self, coarse):
# Add SEC data from the filtered coarse selection
symbols = [i.Symbol for i in coarse if i.HasFundamentalData and i.DollarVolume > 50000000][:10]
for symbol in symbols:
self.AddData(SECReport8K, symbol)
return symbols
def OnData(self, data):
# Store the symbols we want to long in a list
# so that we can have an equal-weighted portfolio
longEquitySymbols = []
# Get all SEC data and loop over it
for report in data.Get(SECReport8K).Values:
# Get the length of all contents contained within the report
reportTextLength = sum([len(i.Text) for i in report.Report.Documents])
if reportTextLength > 20000:
longEquitySymbols.append(report.Symbol.Underlying)
for equitySymbol in longEquitySymbols:
self.SetHoldings(equitySymbol, 1.0 / len(longEquitySymbols))
def OnSecuritiesChanged(self, changes):
for r in [i for i in changes.RemovedSecurities if i.Symbol.SecurityType == SecurityType.Equity]:
# If removed from the universe, liquidate and remove the custom data from the algorithm
self.Liquidate(r.Symbol)
self.RemoveSecurity(Symbol.CreateBase(SECReport8K, r.Symbol, Market.USA))