| Overall Statistics |
|
Total Trades 4 Average Win 8.96% Average Loss -10.27% Compounding Annual Return -2.224% Drawdown 10.700% Expectancy -0.063 Net Profit -2.222% Sharpe Ratio -0.106 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 0.87 Alpha 0.149 Beta -8.168 Annual Standard Deviation 0.131 Annual Variance 0.017 Information Ratio -0.258 Tracking Error 0.131 Treynor Ratio 0.002 Total Fees $7.56 |
import pandas as pd
import nltk
# for details of NLTK, please visit https://www.nltk.org/index.html
class NLTKSentimentTradingAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1) # Set Start Date
self.SetEndDate(2019, 1, 1) # Set End Date
self.SetCash(100000) # Set Strategy Cash
spy = self.AddEquity("SPY", Resolution.Minute)
self.text = self.get_text() # Get custom text data for creating trading signals
self.symbols = [spy.Symbol] # This can be extended to multiple symbols
# for what extra models needed to download, please use code nltk.download()
nltk.download('punkt')
self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 30), self.Trade)
def Trade(self):
current_time = f'{self.Time.year}-{self.Time.month}-{self.Time.day}'
current_text = self.text.loc[current_time][0]
words = nltk.word_tokenize(current_text)
# users should decide their own positive and negative words
positive_word = 'Up'
negative_word = 'Down'
for holding in self.Portfolio.Values:
# liquidate if it contains negative words
if negative_word in words and holding.Invested:
self.Liquidate(holding.Symbol)
# buy if it contains positive words
if positive_word in words and not holding.Invested:
self.SetHoldings(holding.Symbol, 1 / len(self.symbols))
def get_text(self):
# import custom data
# Note: dl must be 1, or it will not download automatically
url = 'https://www.dropbox.com/s/7xgvkypg6uxp6xl/EconomicNews.csv?dl=1'
data = self.Download(url).split('\n')
headline = [x.split(',')[1] for x in data][1:]
date = [x.split(',')[0] for x in data][1:]
# create a pd dataframe with 1st col being date and 2nd col being headline (content of the text)
df = pd.DataFrame(headline, index = date, columns = ['headline'])
return df