| Overall Statistics |
|
Total Trades 9870 Average Win 0.00% Average Loss 0.00% Compounding Annual Return -7.827% Drawdown 9.400% Expectancy -0.722 Net Profit -9.418% Sharpe Ratio -5.419 Probabilistic Sharpe Ratio 0.000% Loss Rate 87% Win Rate 13% Profit-Loss Ratio 1.12 Alpha -0.064 Beta -0.004 Annual Standard Deviation 0.012 Annual Variance 0 Information Ratio -1.271 Tracking Error 0.136 Treynor Ratio 14.372 Total Fees $9870.00 Estimated Strategy Capacity $390000000.00 Lowest Capacity Asset CSIQ TNII135YAI5H |
pass
class MyDonchianChannelAlphaModel(QCAlgorithm):
def __init__(self, upperBand = 55, lowerBand = 55, resolution = Resolution.Daily):
self.upperBand = upperBand
self.lowerBand = lowerBand
self.resolution = resolution
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand)
self.symbolDataBySymbol = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{},{})'.format(self.__class__.__name__, upperBand, lowerBand, resolutionString)
def Update(self, algorithm, data):
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
if symbolData.donchian.IsReady:
if symbolData.PriceOverUpper:
if symbolData.Close > symbolData.donchian.UpperBand.Current.Value:
insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up))
elif symbolData.PriceUnderLower:
if symbolData.Close < symbolData.donchian.LowerBand.Current.Value:
insights.append(Insight.Price(symbolData.symbol, self.predictionInterval, InsightDirection.Down))
symbolData.PriceOverUpper = symbolData.Close > symbolData.donchian.UpperBand.Current.Value
symbolData.PriceUnderLower = symbolData.Close < symbolData.donchian.LowerBand.Current.Value
return insights
def OnSecuritiesChanged(self, algorithm, changes):
for added in changes.AddedSecurities:
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is None:
symbolData = self.SymbolData(added)
symbolData.donchian = algorithm.DCH(added.Symbol, self.upperBand, self.lowerBand, self.resolution)
self.SetWarmup(55)
self.symbolDataBySymbol[added.Symbol] = symbolData
else:
symbolData.donchian.Reset()
class SymbolData:
def __init__(self, security):
self.Bars = None
self.Security = security
self.Symbol = security.Symbol
self.Close = None
self.donchian = None
self.PriceOverUpper = False
self.PriceUnderLower = False
#rolling windows!!pass
class Donchian3(AlphaModel):
def __init__(self, upperBand = 55, lowerBand = 55, resolution = Resolution.Daily):
self.upperBand = upperBand
self.lowerBand = lowerBand
self.resolution = resolution
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand)
self.symbolDataBySymbol = {}
self.closeWindow = {}
self.donchianWindow = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{},{})'.format(self.__class__.__name__, upperBand, lowerBand, resolutionString)
def Update(self, algorithm, data):
# Updates this alpha model with the latest data from the algorithm.
# This is called each time the algorithm receives data for subscribed securities
# Generate insights on the securities in the universe.
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
if symbolData.closeWindow[0] > symbolData.donchianWindow.UpperBand[1]:
insights.append(Insight.Price(symbolData.Symbol, self.predicationInterval, InsightDirection.Up))
elif symbolData.closeWindow[0] < symbolData.donchianWindow.LowerBand[1]:
insights.append(Insight.Price(symbolData.Symbol, self.predicationInterval, InsightDirection.Down))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
# Handle security changes in from your universe model.
for added in changes.Securities:
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is none:
symbolData = SymbolData(added)
self.closeWindow.Add(data[added.Symbol])
self.symbolDataBySymbol[added.Symbol] = symbolData
else:
symbolData.donchian.Reset()
class SymbolData:
def __init__(self, algorithm, security):
self.algorithm = algorithm
self.Security = security
self.Symbol = security.Symbol
self.donchian = algorithm.DCH(added.Symbol, self.upperBand, self.lowerBand, self.resolution)
self.donchianWindow = RollingWindow[IndicatorDataPoint](2)
self.donchian.Updated += self.OnDonchianUpdated
self.consolidator = TradeBarConsolidator(resolution.Daily)
#self.closeWindow = RollingWindow[TradeBar](2)
#self.Consolidate(self.symbol, Resolution.Daily, lambda x: self.closewindow.Add(x))
#self.closeWindow.Add(Data[self.symbol])
#init tradebars here for securities also
def OnDonchianUpdated(self, sender, updated):
if self.donchian.IsReady:
self.donchianWindow.Add(updated)
#def OnCloseWindowUpdated(self, sender, updated):
#if self.closeWindow.IsReady:
#self.closeWindow.Add(updated)
@property
def IsReady(self):
return self.donchian.IsReady and self.donchianWindow.IsReady
pass
class DrawdownStops(RiskManagementModel):
'''Provides an implementation of IRiskManagementModel that limits the drawdown per holding to the specified percentage'''
def __init__(self, maximumDrawdownPercent = 0.05):
'''Initializes a new instance of the MaximumDrawdownPercentPerSecurity class
Args:
maximumDrawdownPercent: The maximum percentage drawdown allowed for any single security holding'''
self.maximumDrawdownPercent = -abs(maximumDrawdownPercent)
def ManageRisk(self, algorithm, targets):
'''Manages the algorithm's risk at each time step
Args:
algorithm: The algorithm instance
targets: The current portfolio targets to be assessed for risk'''
targets = []
for kvp in algorithm.Securities:
security = kvp.Value
if not security.Invested:
continue
pnl = security.Holdings.UnrealizedProfitPercent
if pnl < self.maximumDrawdownPercent:
# liquidate
targets.append(PortfolioTarget(security.Symbol, 0))
return targetspass
class LiquidUniverseSelection(QCAlgorithm):
def __init__(self, algorithm):
self.algorithm = algorithm
self.securities = []
def SelectCoarse(self, coarse):
# sortedByDollarVolume = sorted(coarse, key=lambda c: c.DollarVolume, reverse=True)
coarseSelection = [x for x in coarse if x.HasFundamentalData and x.DollarVolume > 5000000]
universe = [x.Symbol for x in coarseSelection]
#self.algorithm.Securities = universe
#self.Log(universe)
return universe
#def OnData(self, data):
#if self._changes is None: return
#for security in self._changes.RemovedSecurities:
#if security.Invested:
#self.securities.remove(security.Symbol)
#for security in self._changes.AddedSecurities:
#pass
#self._changed = None
def OnSecuritiesChanged(self, algorithm, changes):
for added in changes.AddedSecurities:
self.securities.append(added)
for removed in changes.RemovedSecurities:
if removed in self.securities:
self.securities.remove(removed)
for invested in self.securities.Invested:
self.securities.remove(invested)
#self.Log(f"OnSecuritiesChanged({self.UtcTime}):: {changes}")
class InsightWeightingPortfolioConstructionModel(EqualWeightingPortfolioConstructionModel):
'''Provides an implementation of IPortfolioConstructionModel that generates percent targets based on the
Insight.Weight. The target percent holdings of each Symbol is given by the Insight.Weight from the last
active Insight for that symbol.
For insights of direction InsightDirection.Up, long targets are returned and for insights of direction
InsightDirection.Down, short targets are returned.
If the sum of all the last active Insight per symbol is bigger than 1, it will factor down each target
percent holdings proportionally so the sum is 1.
It will ignore Insight that have no Insight.Weight value.'''
def __init__(self, rebalance = Resolution.Daily, portfolioBias = PortfolioBias.LongShort):
'''Initialize a new instance of InsightWeightingPortfolioConstructionModel
Args:
rebalance: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function.
If None will be ignored.
The function returns the next expected rebalance time for a given algorithm UTC DateTime.
The function returns null if unknown, in which case the function will be called again in the
next loop. Returning current time will trigger rebalance.
portfolioBias: Specifies the bias of the portfolio (Short, Long/Short, Long)'''
self.rebalance = rebalance
self.portfolioBias = portfolioBias
def ShouldCreateTargetForInsight(self, insight):
'''Method that will determine if the portfolio construction model should create a
target for this insight
Args:
insight: The insight to create a target for'''
# Ignore insights that don't have Weight value
return insight.Weight is not None
def DetermineTargetPercent(self, activeInsights):
'''Will determine the target percent for each insight
Args:
activeInsights: The active insights to generate a target for'''
result = {}
# We will adjust weights proportionally in case the sum is > 1 so it sums to 1.
weightSums = sum(self.GetValue(insight) for insight in activeInsights if self.RespectPortfolioBias(insight))
weightFactor = 1.0
if weightSums > 1:
weightFactor = 1 / weightSums
for insight in activeInsights:
result[insight] = (insight.Direction if self.RespectPortfolioBias(insight) else InsightDirection.Flat) * self.GetValue(insight) * weightFactor
return result
def GetValue(self, insight):
'''Method that will determine which member will be used to compute the weights and gets its value
Args:
insight: The insight to create a target for
Returns:
The value of the selected insight member'''
return insight.Weightpass
class DonchianChannelAlpha(AlphaModel):
def __init__(self, upperBand = 55, lowerBand = 55, resolution = Resolution.Daily):
self.upperBand = upperBand
self.lowerBand = lowerBand
self.resolution = resolution
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand)
self.symbolDataBySymbol = {}
self.closeWindow = None
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{},{})'.format(self.__class__.__name__, upperBand, lowerBand, resolutionString)
def Update(self, algorithm, data):
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
#this is all wrong, you fugged up monkey, its backwars XDDDDD
previousClose = symbolData.closeWindow[1]
if previousClose > symbolData.donchian.UpperBand.Current.Value:
insights.append(Insight.Price(symbolData.Symbol, self, predictionInterval, InsightDirection.Up))
elif previousClose < symbolData.donchian.LowerBand.Current.Value:
insights.append(Insight.Price(symbolData.Symbol, self, predictionInterval, InsightDirection.Down))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
for added in changes.AddedSecurities:
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is None:
self.donchian = algorithm.DCH(added.Symbol, self.upperBand, self.lowerBand, self.resolution)
self.donchianWindow = RollingWindow[IndicatorDataPoint](2)
self.closeWindow = RollingWindow[float](2)
self.consolidator = TradeBarConsolidator(2)
self.consolidator.DataConsolidated += self.CloseUpdated
algorithm.SubscriptionManager.AddConsolidator(Symbol, self.consolidator)
symbolData = SymbolData(added)
self.symbolDataBySymbol[added.Symbol] = symbolData
else:
symbolData.donchian.Reset()
symbolData.Close.Reset()
def DonchianUpdated(self, sender, updated):
if self.donchian.IsReady:
self.donchianWindow.Add(updated)
def CloseUpdated(self, sender, bar):
self.closeWindow.Add(bar.Close)
@property
def IsReady(self):
return self.donchian.IsReady and self.closeWindowIsReady
class SymbolData:
def __init__(self, security):
self.Security = security
self.Symbol = security.Symbol
self.algorithm = algorithm
self.donchian = algorithm.DCH(symbol,)
self.donchianWindow = None
self.closeWindow = None
self.consolidator = None
class MaximumSectorExposureRiskManagementModel(RiskManagementModel):
'''Provides an implementation of IRiskManagementModel that that limits the sector exposure to the specified percentage'''
def __init__(self, maximumSectorExposure = 0.20):
'''Initializes a new instance of the MaximumSectorExposureRiskManagementModel class
Args:
maximumDrawdownPercent: The maximum exposure for any sector, defaults to 20% sector exposure.'''
if maximumSectorExposure <= 0:
raise ValueError('MaximumSectorExposureRiskManagementModel: the maximum sector exposure cannot be a non-positive value.')
self.maximumSectorExposure = maximumSectorExposure
self.targetsCollection = PortfolioTargetCollection()
def ManageRisk(self, algorithm, targets):
'''Manages the algorithm's risk at each time step
Args:
algorithm: The algorithm instance'''
maximumSectorExposureValue = float(algorithm.Portfolio.TotalPortfolioValue) * self.maximumSectorExposure
self.targetsCollection.AddRange(targets)
risk_targets = list()
# Group the securities by their sector
filtered = list(filter(lambda x: x.Value.Fundamentals is not None and x.Value.Fundamentals.HasFundamentalData, algorithm.UniverseManager.ActiveSecurities))
filtered.sort(key = lambda x: x.Value.Fundamentals.CompanyReference.IndustryTemplateCode)
groupBySector = groupby(filtered, lambda x: x.Value.Fundamentals.CompanyReference.IndustryTemplateCode)
for code, securities in groupBySector:
# Compute the sector absolute holdings value
# If the construction model has created a target, we consider that
# value to calculate the security absolute holding value
quantities = {}
sectorAbsoluteHoldingsValue = 0
for security in securities:
symbol = security.Value.Symbol
quantities[symbol] = security.Value.Holdings.Quantity
absoluteHoldingsValue = security.Value.Holdings.AbsoluteHoldingsValue
if self.targetsCollection.ContainsKey(symbol):
quantities[symbol] = self.targetsCollection[symbol].Quantity
absoluteHoldingsValue = (security.Value.Price * abs(quantities[symbol]) *
security.Value.SymbolProperties.ContractMultiplier *
security.Value.QuoteCurrency.ConversionRate)
sectorAbsoluteHoldingsValue += absoluteHoldingsValue
# If the ratio between the sector absolute holdings value and the maximum sector exposure value
# exceeds the unity, it means we need to reduce each security of that sector by that ratio
# Otherwise, it means that the sector exposure is below the maximum and there is nothing to do.
ratio = float(sectorAbsoluteHoldingsValue) / maximumSectorExposureValue
if ratio > 1:
for symbol, quantity in quantities.items():
if quantity != 0:
risk_targets.append(PortfolioTarget(symbol, float(quantity) / ratio))
return risk_targets
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
anyFundamentalData = any([
kvp.Value.Fundamentals is not None and
kvp.Value.Fundamentals.HasFundamentalData for kvp in algorithm.ActiveSecurities
])
if not anyFundamentalData:
raise Exception("MaximumSectorExposureRiskManagementModel.OnSecuritiesChanged: Please select a portfolio selection model that selects securities with fundamental data.")
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from universe import LiquidUniverseSelection
from Alpha8 import Donchian8
from Risk.CompositeRiskManagementModel import CompositeRiskManagementModel
from RiskMaximumDrawdown import DrawdownStops
from RiskSectorExposure import MaximumSectorExposureRiskManagementModel
from RiskTrailingStop import TrailingStopRiskManagementModel
from PortfolioConstruction import InsightWeightingPortfolioConstructionModel
class UpgradedFluorescentYellowBat(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 12, 12)
self.SetEndDate(2021, 1, 1)
self.SetCash(100000)
self.Settings.FreePortfolioValuePercentage = 0.50
#self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
#self.SetWarmup(60)
self.SetBenchmark("SPY")
self.UniverseSettings.Resolution = Resolution.Daily
self.CustomUniverseSelectionModel = LiquidUniverseSelection(self)
self.AddUniverse(self.CustomUniverseSelectionModel.SelectCoarse)
self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel())
self.Settings.RebalancePortfolioOnInsightChanges = False;
self.Settings.RebalancePortfolioOnSecurityChanges = False;
self.SetExecution(ImmediateExecutionModel())
self.SetAlpha(Donchian8())
self.SetRiskManagement(TrailingStopRiskManagementModel())class Donchian8(AlphaModel):
def __init__(self, lowerBand = 55, upperBand = 55, emaPeriod = 100, momPeriod = 21, resolution = Resolution.Daily):
self.lowerBand = lowerBand
self.upperBand = upperBand
self.resolution = resolution
self.emaPeriod = emaPeriod
self.momPeriod = momPeriod
self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand)
self.symbolData = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{},{},{},{})'.format(self.__class__.__name__, lowerBand, upperBand, emaPeriod, momPeriod, resolutionString)
def Update(self, algorithm, data):
insights = []
for key, sd in self.symbolData.items():
if sd.donchian.IsReady and \
sd.donchianWindow.IsReady and \
sd._donchian["UpperBand"].IsReady and \
sd._donchian["LowerBand"].IsReady and \
sd.ema.IsReady and \
sd.mom.IsReady and\
sd.momWindow.IsReady:
if sd._donchian["UpperBand"][1] < sd.Security.Close and \
sd.Security.Close > sd.ema.Current.Value and \
sd.momWindow[1] < sd.momWindow[0]:
insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Up,None, None, None, 0.01))
if sd._donchian["LowerBand"][1] > sd.Security.Close and \
sd.Security.Close < sd.ema.Current.Value and \
sd.momWindow[1] > sd.momWindow[0]:
insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Down,None, None, None, 0.01))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
for added in changes.AddedSecurities:
self.symbolData[added.Symbol] = SymbolData(algorithm, added, self.upperBand, self.lowerBand, self.emaPeriod, self.momPeriod, self.resolution)
for removed in changes.RemovedSecurities:
data = self.symbolData.pop(removed.Symbol, None)
if data is not None:
algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.Consolidator)
algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.ConsolidatorEMA)
algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.ConsolidatorMOM)
class SymbolData:
def __init__(self, algorithm, security, lowerBand, upperBand, emaPeriod, momPeriod, resolution):
self.Security = security
self.donchian = DonchianChannel(upperBand, lowerBand)
self._donchian = {}
self.Consolidator = algorithm.ResolveConsolidator(security.Symbol, resolution)
algorithm.RegisterIndicator(security.Symbol, self.donchian, self.Consolidator)
self.donchian.Updated += self.DonchianUpdated
self.donchianWindow = RollingWindow[IndicatorDataPoint](2)
self._donchian["UpperBand"] = RollingWindow[float](2)
self._donchian["LowerBand"] = RollingWindow[float](2)
self.ema = ExponentialMovingAverage(emaPeriod)
self.ConsolidatorEMA = algorithm.ResolveConsolidator(security.Symbol, resolution)
algorithm.RegisterIndicator(security.Symbol, self.ema, self.ConsolidatorEMA)
self.mom = Momentum(momPeriod)
self.ConsolidatorMOM = algorithm.ResolveConsolidator(security.Symbol, resolution)
algorithm.RegisterIndicator(security.Symbol, self.mom, self.ConsolidatorMOM)
self.mom.Updated += self.MOMUpdated
self.momWindow = RollingWindow[IndicatorDataPoint](2)
def DonchianUpdated(self, sender, updated):
self.donchianWindow.Add(updated)
self._donchian["UpperBand"].Add(self.donchian.UpperBand.Current.Value)
self._donchian["LowerBand"].Add(self.donchian.LowerBand.Current.Value)
def MOMUpdated(self, sender, updated):
self.momWindow.Add(updated)
class Donchian5(AlphaModel):
def __init__(self, period = 55, resolution = Resolution.Daily):
self.period = period
self.resolution = resolution
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), period)
self.symbolDataBySymbol = {}
#self.donchianWindow = {}
#self._donchian = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{})'.format(self.__class__.__name__, period, resolutionString)
def Update(self, algorithm, data):
insights = []
return insights
def OnSecuritiesChanged(self, algorithm, changes):
for added in changes.AddedSecurities:
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is None:
#history = algorithm.History(added.Symbol, self.period, self.resolution)
self.window = RollingWindow[TradeBar](2)
symbolData = SymbolData(added)
symbolData.donchian = algorithm.DCH(added.Symbol, self.period, self.period, self.resolution)
self.donchianWindow = RollingWindow[IndicatorDataPoint](2)
symbolData.donchian.Updated += self.DonchianUpdated
symbolData._donchian["UpperBand"] = RollingWindow[float](2)
symbolData._donchian["LowerBand"] = RollingWindow[float](2)
self.symbolDataBySymbol[added.Symbol] = symbolData
else:
symbolData.donchian.Reset()
self.donchianWindow.Reset()
symbolData._donchian["UpperBand"].Reset()
symbolData._donchian["UpperBand"].Reset()
def DonchianUpdated(self, sender, updated):
self.donchianWindow.Add(updated)
symbolData._donchian["UpperBand"].Add(symbolData.donchian.UpperBand.Current.Value)
symbolData._donchian["LowerBand"].Add(symbolData.donchian.LowerBand.Current.Value)
class SymbolData:
def __init__ (self, security):
self.Security = security
self.Symbol = security.Symbol
self.donchian = None
self._donchian = {}
class TrailingStopRiskManagementModel(RiskManagementModel):
'''Provides an implementation of IRiskManagementModel that limits the maximum possible loss
measured from the highest unrealized profit'''
def __init__(self, maximumDrawdownPercent = 0.20):
'''Initializes a new instance of the TrailingStopRiskManagementModel class
Args:
maximumDrawdownPercent: The maximum percentage drawdown allowed for algorithm portfolio compared with the highest unrealized profit, defaults to 5% drawdown'''
self.maximumDrawdownPercent = -abs(maximumDrawdownPercent)
self.trailingClose = dict()
def ManageRisk(self, algorithm, targets):
'''Manages the algorithm's risk at each time step
Args:
algorithm: The algorithm instance
targets: The current portfolio targets to be assessed for risk'''
riskAdjustedTargets = list()
for kvp in algorithm.Securities:
symbol = kvp.Key
security = kvp.Value
# Remove if not invested
if not security.Invested:
self.trailingClose.pop(symbol, None)
continue
# Add newly invested securities
if symbol not in self.trailingClose:
self.trailingClose[symbol] = security.Holdings.AveragePrice # Set to average holding cost
continue
# Check for new close high and update - set to tradebar close
if self.trailingClose[symbol] < security.Close:
self.trailingClose[symbol] = security.Close
continue
# Check for securities past the drawdown limit
securityClose = self.trailingClose[symbol]
drawdown = (security.Close / securityClose) - 1
if drawdown < self.maximumDrawdownPercent:
# liquidate
riskAdjustedTargets.append(PortfolioTarget(symbol, 0))
return riskAdjustedTargets
# Your New Python Fileclass Donchian6(AlphaModel):
def __init__(self, lowerBand = 55, upperBand = 55, emaPeriod = 100, resolution = Resolution.Daily):
self.lowerBand = lowerBand
self.upperBand = upperBand
self.resolution = resolution
self.emaPeriod = emaPeriod
self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand)
self.symbolData = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{},{})'.format(self.__class__.__name__, lowerBand, upperBand, resolutionString)
def Update(self, algorithm, data):
insights = []
for key, sd in self.symbolData.items():
if sd.donchian.IsReady and \
sd.donchianWindow.IsReady and \
sd._donchian["UpperBand"].IsReady and \
sd._donchian["LowerBand"].IsReady:
if sd._donchian["UpperBand"][1] < sd.Security.Close and \
sd.Security.Close > sd.ema.Current.Value:
insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Up))
if sd._donchian["LowerBand"][1] > sd.Security.Close and \
sd.Security.Close < sd.ema.Current.Value:
insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Down))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
for added in changes.AddedSecurities:
self.symbolData[added.Symbol] = SymbolData(algorithm, added, self.upperBand, self.lowerBand, self.emaPeriod, self.resolution)
for removed in changes.RemovedSecurities:
data = self.symbolData.pop(removed.Symbol, None)
if data is not None:
algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.Consolidator)
algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.ConsolidatorEMA)
class SymbolData:
def __init__(self, algorithm, security, lowerBand, upperBand, emaPeriod, resolution):
self.Security = security
self.donchian = DonchianChannel(upperBand, lowerBand)
self._donchian = {}
self.Consolidator = algorithm.ResolveConsolidator(security.Symbol, resolution)
algorithm.RegisterIndicator(security.Symbol, self.donchian, self.Consolidator)
self.donchian.Updated += self.DonchianUpdated
self.donchianWindow = RollingWindow[IndicatorDataPoint](2)
self._donchian["UpperBand"] = RollingWindow[float](2)
self._donchian["LowerBand"] = RollingWindow[float](2)
self.ema = ExponentialMovingAverage(emaPeriod)
self.ConsolidatorEMA = algorithm.ResolveConsolidator(security.Symbol, resolution)
algorithm.RegisterIndicator(security.Symbol, self.ema, self.ConsolidatorEMA)
def DonchianUpdated(self, sender, updated):
self.donchianWindow.Add(updated)
self._donchian["UpperBand"].Add(self.donchian.UpperBand.Current.Value)
self._donchian["LowerBand"].Add(self.donchian.LowerBand.Current.Value)
class Donchian7(AlphaModel):
def __init__(self, lowerBand = 55, upperBand = 55, emaPeriod = 100, resolution = Resolution.Daily):
self.lowerBand = lowerBand
self.upperBand = upperBand
self.resolution = resolution
self.emaPeriod = emaPeriod
self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), upperBand)
self.symbolData = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{},{})'.format(self.__class__.__name__, lowerBand, upperBand, resolutionString)
def Update(self, algorithm, data):
insights = []
for key, sd in self.symbolData.items():
if sd.donchian.IsReady and \
sd.donchianWindow.IsReady and \
sd._donchian["UpperBand"].IsReady and \
sd._donchian["LowerBand"].IsReady and \
sd.obv.IsReady and\
sd.obvWindow.IsReady:
if sd._donchian["UpperBand"][1] < sd.Security.Close and \
sd.Security.Close > sd.ema.Current.Value and \
sd.obvWindow[1] < sd.obvWindow[0]:
insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Up))
if sd._donchian["LowerBand"][1] > sd.Security.Close and \
sd.Security.Close < sd.ema.Current.Value and \
sd.obvWindow[1] > sd.obvWindow[0]:
insights.append(Insight.Price(sd.Security.Symbol, self.insightPeriod, InsightDirection.Down))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
for added in changes.AddedSecurities:
self.symbolData[added.Symbol] = SymbolData(algorithm, added, self.upperBand, self.lowerBand, self.emaPeriod, self.resolution)
for removed in changes.RemovedSecurities:
data = self.symbolData.pop(removed.Symbol, None)
if data is not None:
algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.Consolidator)
algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.ConsolidatorEMA)
algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, data.ConsolidatorOBV)
class SymbolData:
def __init__(self, algorithm, security, lowerBand, upperBand, emaPeriod, resolution):
self.Security = security
self.donchian = DonchianChannel(upperBand, lowerBand)
self._donchian = {}
self.Consolidator = algorithm.ResolveConsolidator(security.Symbol, resolution)
algorithm.RegisterIndicator(security.Symbol, self.donchian, self.Consolidator)
self.donchian.Updated += self.DonchianUpdated
self.donchianWindow = RollingWindow[IndicatorDataPoint](2)
self._donchian["UpperBand"] = RollingWindow[float](2)
self._donchian["LowerBand"] = RollingWindow[float](2)
self.ema = ExponentialMovingAverage(emaPeriod)
self.ConsolidatorEMA = algorithm.ResolveConsolidator(security.Symbol, resolution)
algorithm.RegisterIndicator(security.Symbol, self.ema, self.ConsolidatorEMA)
self.obv = OnBalanceVolume()
self.ConsolidatorOBV = algorithm.ResolveConsolidator(security.Symbol, resolution)
algorithm.RegisterIndicator(security.Symbol, self.obv, self.ConsolidatorOBV)
self.obv.Updated += self.OBVUpdated
self.obvWindow = RollingWindow[IndicatorDataPoint](2)
def DonchianUpdated(self, sender, updated):
self.donchianWindow.Add(updated)
self._donchian["UpperBand"].Add(self.donchian.UpperBand.Current.Value)
self._donchian["LowerBand"].Add(self.donchian.LowerBand.Current.Value)
def OBVUpdated(self, sender, updated):
self.obvWindow.Add(updated)
# Your New Python Fileclass Donchian4(AlphaModel):
def __init__(self, period = 55, resolution = Resolution.Daily):
self.period = period
self.resolution = resolution
self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), period)
self.symbolDataBySymbol = {}
self.closeWindow = {}
self.lowWindow = {}
self.highWindow = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{})'.format(self.__class__.__name__, period, resolutionString)
def Update(self, algorithm, data):
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
if data.ContainsKey(symbol) and data[symbol] is not None:
self.closeWindow[symbol].Add(data[symbol].Close)
donchian = symbolData.Donchian
#if donchian.IsReady:
#pass
#return insights
def OnSecuritiesChanged(self, algorithm, changes):
symbols = [x.Symbol for x in changes.RemovedSecurities]
if len(symbols) > 0:
for subscription in algorithm.SubscriptionManager.Subscriptions:
if subscription.Symbol in symbols:
self.symbolDataBySymbol.pop(subscription.Symbol, None)
subscription.Consolidators.Clear()
#init data for added securities
addedSymbols = [x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol]
if len(addedSymbols) == 0: return
history = algorithm.History(addedSymbols, self.period, self.resolution)
for symbol in addedSymbols:
donchian = algorithm.DCH(symbol, self.period, self.period, self.resolution)
self.closeWindow[symbol] = RollingWindow[float](2)
if not history.empty:
ticker = SymbolCache.GetTicker(symbol)
if ticker not in history.index.levels[0]:
Log.Trace(f'Donchian4.OnSecuritiesChanged: {ticker} not found in history data frame.')
continue
for tuple in history.loc[ticker].itertuples():
tradeBar = TradeBar(bar.Index[1], bar.Index[0], bar.open, bar.high, bar.low, bar.close, bar.volume, timedelta(1))
donchian.Update(tradeBar)
self.symbolDataBySymbol[symbol] = SymbolData(symbol, donchian)
class SymbolData:
def __init__(self, symbol, donchian):
self.Symbol = symbol
self.Donchian = donchian