| Overall Statistics |
|
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return -8.312% Drawdown 0.200% Expectancy 0 Net Profit 0% Sharpe Ratio -4.315 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.012 Beta 0.096 Annual Standard Deviation 0.012 Annual Variance 0 Information Ratio 3.807 Tracking Error 0.093 Treynor Ratio -0.523 Total Fees $1.00 |
namespace QuantConnect {
/// <summary>
/// Represents the LogReturn indicator (LOGR)
/// - log returns are useful for identifying price convergence/divergence in a given period
/// - logr = log (current price / last price in period)
/// </summary>
public class LogReturn : WindowIndicator<IndicatorDataPoint>
{
/// <summary>
/// Initializes a new instance of the LogReturn class with the specified name and period
/// </summary>
/// <param name="name">The name of this indicator</param>
/// <param name="period">The period of the LOGR</param>
public LogReturn(string name, int period)
: base(name, period)
{
}
/// <summary>
/// Initializes a new instance of the LogReturn class with the default name and period
/// </summary>
/// <param name="period">The period of the SMA</param>
public LogReturn(int period)
: base("LOGR" + period, period)
{
}
/// <summary>
/// Computes the next value for this indicator from the given state.
/// - logr = log (current price / last price in period)
/// </summary>
/// <param name="window">The window of data held in this indicator</param>
/// <param name="input">The input value to this indicator on this time step</param>
/// <returns>A new value for this indicator</returns>
protected override decimal ComputeNextValue(IReadOnlyWindow<IndicatorDataPoint> window, IndicatorDataPoint input)
{
decimal valuef = input;
decimal value0 = !window.IsReady
? window[window.Count - 1]
: window.MostRecentlyRemoved;
decimal logr = (decimal)Math.Log((double)(valuef / value0));
return logr;
}
}
}using QuantConnect.Algorithm;
using QuantConnect.Indicators;
using QuantConnect.Data;
using QuantConnect.Data.Consolidators;
using QuantConnect.Data.Market;
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Orders;
using QuantConnect.Indicators;
using QuantConnect.Securities;
using QuantConnect.Brokerages;
using System.Globalization;
using System.Text;
using System.Threading.Tasks;
using System.Collections.Concurrent;
namespace QuantConnect
{
public class BasicTemplateAlgorithm : QCAlgorithm
{
//string symbol = "AAPL";
//private LogReturn logr14;
//private LogReturn logr30;
private LogReturn lastLogr;
private DateTime previous;
Security _security;
//RegisterIndicator(symbol, logr, null);
SecurityChanges _changes = SecurityChanges.None;
private readonly ConcurrentDictionary<Symbol, SelectionData> _averages = new ConcurrentDictionary<Symbol, SelectionData>();
private class SelectionData
{
public LogReturn logr14;
public LogReturn logr30;
public SelectionData()
{
logr14 = new LogReturn(1);
logr30 = new LogReturn(2);
}
public decimal ScaledDelta
{
get { return (logr14); }
}
// updates the EMA50 and EMA100 indicators, returning true when they're both ready
public bool Update(DateTime time, decimal value)
{
return logr14.Update(time, value) && logr30.Update(time, value);
}
}
//Initialize the data and resolution you require for your strategy:
public override void Initialize()
{
//Start and End Date range for the backtest:
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2016, 2, 23);
SetEndDate(DateTime.Now.Date.AddDays(-1));
//Cash allocation
SetCash(5000);
AddUniverse(coarse =>
{
return (from stock in coarse
// grab th SelectionData instance for this
let avg = _averages.GetOrAdd(stock.Symbol, sym => new SelectionData())
// Update returns true when the indicators are ready, so don't accept until they are
//where avg.Update(stock.EndTime, stock.Price)
// only pick symbols who have their 50 day ema over their 100 day ema
where stock.Price < 5 && stock.Price > 2
//where stock.Price > stock.Value
// prefer symbols with a larger delta by percentage between the two averages
// prefer symbols with a larger delta by percentage between the two averages
//orderby avg.ScaledDelta
// we only need to return the symbol and return 'Count' symbols
// we only need to return the symbol and return 'Count' symbols
select stock.Symbol).Take(10);
});
}
//Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol.
// "TradeBars" object holds many "TradeBar" objects: it is a dictionary indexed by the symbol:
//
// e.g. data["MSFT"] data["GOOG"]
public void OnData(TradeBars data)
{
foreach (var stock in _changes.AddedSecurities)
{
_security = stock;
//Add as many securities as you like. All the data will be passed into the event handler:
AddSecurity(SecurityType.Equity, _security.Symbol, Resolution.Daily);
//logr14 = new LogReturn(1);
//logr30 = new LogReturn(2);
//lastLogr = logr14;
}
if (!Portfolio.HoldStock)
{
int quantity = (int)Math.Floor(Portfolio.Cash / data[_security.Symbol].Close);
Order(_security.Symbol, 100);
}
// update Indicators
/*decimal price = data[_security.Symbol].Close;
IndicatorDataPoint datum = new IndicatorDataPoint(data[_security.Symbol].Time, price);
Log("datum" + datum);
logr14.Update(datum);
logr30.Update(datum);
Log("log14" + logr14);
Log("log30" + logr30);
// wait for the indicators to fully initialize
if (!logr30.IsReady) return;
// stock is moving in an upwards trend
if (logr14.Current.Value > logr30.Current.Value)
{
if (!Portfolio.HoldStock)
{
int quantity = (int)Math.Floor(Portfolio.Cash / data[symbol].Close);
Order(symbol, quantity);
}
}
// stock is moving in a downwards trend
else if (logr30.Current.Value > logr14.Current.Value)
{
Liquidate(symbol);
}
Plot(symbol, logr14);
Plot(symbol, logr30);*/
}
public override void OnSecuritiesChanged(SecurityChanges changes)
{
_changes = changes;
}
}
}