| Overall Statistics |
|
Total Trades 16 Average Win 0.54% Average Loss -0.49% Compounding Annual Return 12.750% Drawdown 2.000% Expectancy 0.044 Net Profit 0.154% Sharpe Ratio 0.633 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 1.09 Alpha 3.315 Beta -172.188 Annual Standard Deviation 0.232 Annual Variance 0.054 Information Ratio 0.551 Tracking Error 0.233 Treynor Ratio -0.001 Total Fees $1423.50 |
import decimal as d
import numpy as np
import pandas as pd
import math
import datetime
import json
class DropboxBaseDataUniverseSelectionAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019,2,8)
self.SetEndDate(2019,2,12)
self.SetCash(5000000)
# add equity tickers to the universe (before the market open of each trading day)
self.UniverseSettings.Resolution = Resolution.Minute;
self.AddUniverse(StockDataSource, "my-stock-data-source", self.stockDataSource)
self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw
# set schedule to liquidate at 10 minutes prior to the market close of each trading day
spy = self.AddEquity("SPY", Resolution.Minute)
spy.SetDataNormalizationMode(DataNormalizationMode.Raw)
self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 10), self.EveryDayBeforeMarketClose)
def stockDataSource(self, data): # This will grab for each date the different tickers in the csv and add them to the universe
list = []
for item in data:
for symbol in item["Symbols"]:
list.append(symbol)
#self.Debug(str(self.Time))
#self.Debug(str(list))
return list
def EveryDayBeforeMarketClose(self):
#self.Debug("############## Closing Position " + str(self.Time.date()) + " " + str(self.Time) + "############## ")
self.Liquidate()
for equity in self.Portfolio:
self.RemoveSecurity(equity.Key)
self.Debug("Check EOD equity "+str(equity.Key))
spy = self.AddEquity("SPY", Resolution.Minute)
spy.SetDataNormalizationMode(DataNormalizationMode.Raw)
self.Debug("Positions closed")
def OnData(self, data):
option_invested = [x.Key for x in self.Portfolio if x.Value.Invested and x.Value.Type==SecurityType.Option]
if (self.Time.time() < datetime.time(12, 30, 0)) & (self.Time.time() > datetime.time(9, 31, 0)) & (len(self.Transactions.GetOpenOrders())==0): # to avoid OnData to trade again just before the end of the day (after the liquidation)
for symbol in data.Keys:
if symbol.SecurityType == 1: #Selecting only stocks
invested = [option for option in option_invested if option.Underlying == symbol]
if len(invested) > 0:
self.Debug("Order Management Module for "+ str(symbol))
total_option_position = 0
for i in invested: # Loop through options in open positions
total_option_position += round(self.Portfolio[i].HoldingsValue, 2)
#quantity = float(self.Portfolio[i].Quantity)
#initial_option_position = round(1000/quantity, 2)
self.Debug(str(total_option_position))
if (abs(total_option_position) > 1.25*100000) or (abs(total_option_position) < 0.75*100000) :
for i in invested: #Close each option
self.Debug("Liquidating position : " +str(i))
#self.Debug("Check Symbol Risk mgt " +str(i))
self.Liquidate(i)
for equity in self.Portfolio:
self.Debug("Avant : "+str(equity))
#self.Debug("Underlying : "+str(equity.Key.Underlying))
#if (equity.Key.Underlying == symbol):
self.RemoveSecurity(equity.Key)
self.RemoveSecurity(symbol)
for equity in self.Portfolio:
self.Debug("Après : "+str(equity))
# Check by comparing backtesting trades, seems like the algorithm is reinvesting after closing
continue
elif symbol.Value == "SPY":
continue
#self.Log(self.Time.time())
#self.Log(symbol)
#self.SetHoldings(key, 0.1)
else:
stk = self.AddEquity(symbol.Value, Resolution.Minute)
stk.SetDataNormalizationMode(DataNormalizationMode.Raw)
contracts = self.OptionChainProvider.GetOptionContractList(symbol, self.Time.date()) # Get list of strikes and expiries
self.TradeOptions(contracts, symbol.Value) # Select the right strikes/expiries and trade
def TradeOptions(self, contracts, ticker):
# run CoarseSelection method and get a list of contracts expire within 15 days from now on
# and the strike price between rank -1 to rank 1, rank being the step of the contract
filtered_contracts = self.CoarseSelection(ticker, contracts, -1, 1, 0, 15) # set min_expiry as 1 would avoid trading the contract that expires on the same day
if len(filtered_contracts) >0:
expiry = sorted(filtered_contracts,key = lambda x: x.ID.Date, reverse=False)[0].ID.Date # Take the closest expiry
# filter the call options from the contracts expire on that date
call = [i for i in filtered_contracts if i.ID.Date == expiry and i.ID.OptionRight == 0]
# sorted the contracts according to their strike prices
call_contracts = sorted(call,key = lambda x: x.ID.StrikePrice)
self.call = call_contracts[0]
for i in filtered_contracts:
if i.ID.Date == expiry and i.ID.OptionRight == 1 and i.ID.StrikePrice ==call_contracts[0].ID.StrikePrice:
self.put = i
''' Before trading the specific contract, you need to add this option contract
AddOptionContract starts a subscription for the requested contract symbol '''
# self.call is the symbol of a contract
self.AddOptionContract(self.call, Resolution.Minute)
self.AddOptionContract(self.put, Resolution.Minute)
call_price = self.Securities[self.call].Price
put_price = self.Securities[self.put].Price
self.Debug("Call Mid-Point for "+str(ticker)+": "+str(call_price))
self.Debug("Put Mid-Point "+str(ticker)+": "+str(put_price))
if (float(call_price) >0) and (float(put_price)>0):
quantity = - int(1000/(call_price+put_price))
self.LimitOrder(self.call.Value, quantity, call_price *0.99)
self.LimitOrder(self.put.Value, quantity, put_price *0.999)
#self.SetHoldings(self.call.Value, -0.01)
#self.SetHoldings(self.put.Value, -0.01)
else:
self.Debug("Could not Buy / Sell Straddle")
# Some Logging
#self.Debug("Strike Price : "+str(self.call.ID.StrikePrice))
#self.Debug("Expiry : "+str(self.call.ID.Date))
#self.Debug("IV : "+str(self.call.ImpliedVolatility))
else:
pass
def CoarseSelection(self, underlyingsymbol, symbol_list, min_strike_rank, max_strike_rank, min_expiry, max_expiry):
''' This method implements the coarse selection of option contracts
according to the range of strike price and the expiration date,
this function will help you better choose the options of different moneyness '''
# filter the contracts based on the expiry range
contract_list = [i for i in symbol_list if min_expiry <= (i.ID.Date.date() - self.Time.date()).days < max_expiry]
#self.Log("Ticker Und : " + str(underlyingsymbol))
#self.Log("Nb of contract found : " + str(len(contract_list)))
#self.Log("Underlying price : "+str(self.Securities[underlyingsymbol].Price))
# find the strike price of ATM option
# It seems like sometimes OptionChainProvider.GetOptionContractList is bugging and returns nothing, so let's try/except
try:
atm_strike = sorted(contract_list,
key = lambda x: abs(x.ID.StrikePrice - self.Securities[underlyingsymbol].Price))[0].ID.StrikePrice
strike_list = sorted(set([i.ID.StrikePrice for i in contract_list]))
# find the index of ATM strike in the sorted strike list
atm_strike_rank = strike_list.index(atm_strike)
try:
min_strike = strike_list[atm_strike_rank + min_strike_rank]
max_strike = strike_list[atm_strike_rank + max_strike_rank]
except:
min_strike = strike_list[0]
max_strike = strike_list[-1]
# filter the contracts based on the range of the strike price rank
filtered_contracts = [i for i in contract_list if i.ID.StrikePrice >= min_strike and i.ID.StrikePrice <= max_strike]
except:
self.Debug("Problem")
return filtered_contracts
class StockDataSource(PythonData):
def GetSource(self, config, date, isLiveMode):
url = "https://www.dropbox.com/s/2az14r5xbx4w5j6/daily-stock-picker-live.csv?dl=1" if isLiveMode else \
"https://www.dropbox.com/s/ofzgxsp2b27pkri/quantconnect_triggers.csv?dl=1"
return SubscriptionDataSource(url, SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLiveMode):
#if not (line.strip() and line[0].isdigit()): return None
stocks = StockDataSource()
stocks.Symbol = config.Symbol
csv = line.rstrip(',').split(',') # rstrip is essential because quantconnect throws an empty element error (extra commas at the end of the csv)
if isLiveMode:
stocks.Time = date
stocks["Symbols"] = csv
else:
stocks.Time = datetime.datetime.strptime(csv[0], "%Y-%m-%d %H:%M:%S")
stocks["Symbols"] = csv[1:]
return stocks