| Overall Statistics |
|
Total Trades 1988 Average Win 1.17% Average Loss -0.57% Compounding Annual Return 31.891% Drawdown 33.000% Expectancy 0.628 Net Profit 3596.917% Sharpe Ratio 1.248 Probabilistic Sharpe Ratio 64.998% Loss Rate 47% Win Rate 53% Profit-Loss Ratio 2.06 Alpha 0.273 Beta 0.17 Annual Standard Deviation 0.233 Annual Variance 0.054 Information Ratio 0.69 Tracking Error 0.278 Treynor Ratio 1.704 Total Fees $10886.96 |
"""
SEL(stock selection part)
Based on the 'Quality Companies in an Uptrand' strategy introduced by Chris Cain, 22 Nov 2019
adapted and recoded by Jonathon Tzu and Peter Guenther
https://www.quantconnect.com/forum/discussion/9678/quality-companies-in-an-uptrend/p1
https://www.quantconnect.com/forum/discussion/9632/amazing-returns-superior-stock-selection-strategy-superior-in-amp-out-strategy/p2
I/O(in & out part)
Based on the 'In & Out' strategy introduced by Peter Guenther, 4 Oct 2020
expanded/inspired by Tentor Testivis, Dan Whitnable (Quantopian), Vladimir, Thomas Chang,
Mateusz Pulka, Derek Melchin (QuantConnect), Nathan Swenson, Goldie Yalamanchi, and Sudip Sil
https://www.quantopian.com/posts/new-strategy-in-and-out
https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/p1
code version: In_out_flex_v5_disambiguate_v3
"""
from QuantConnect.Data.UniverseSelection import *
import math
import numpy as np
import pandas as pd
import scipy as sp
class QualUp_InOut(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1) #Set Start Date
#self.SetEndDate(2009, 12, 31) #Set End Date
self.cap = 100000
self.SetCash(self.cap)
res = Resolution.Hour
# Holdings
### 'Out' holdings and weights
self.BND1 = self.AddEquity('TLT', res).Symbol #TLT; TMF for 3xlev
self.HLD_OUT = {self.BND1: 1}
### 'In' holdings and weights (static stock selection strategy)
##### These are determined flexibly via sorting on fundamentals
##### In & Out parameters #####
# Feed-in constants
self.INI_WAIT_DAYS = 15 # out for 3 trading weeks
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('SPY', res).Symbol # market
self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials)
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res)
self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
self.INFL = self.AddEquity('RINF', res).Symbol # disambiguate GPLD/SLVA pair via inflaction expectations
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.PRDC # vs industrials
self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven currency (CHF)
self.RICU = self.AddEquity('FXA', res).Symbol # vs risk currency (AUD)
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU, self.INFL]
self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX]
self.pairlist = ['G_S', 'U_I', 'C_A']
# Initialize variables
## 'In'/'out' indicator
self.be_in = 999 #initially, set to an arbitrary value different from 1 (in) and 0 (out)
self.be_in_prior = 0
## Day count variables
self.dcount = 0 # count of total days since start
self.outday = -self.INI_WAIT_DAYS+1 # dcount when self.be_in=0
## Flexi wait days
self.WDadjvar = self.INI_WAIT_DAYS
self.adjwaitdays = self.INI_WAIT_DAYS
# set a warm-up period to initialize the indicator
self.SetWarmUp(timedelta(350))
##### Qual-Up strategy parameters #####
self.UniverseSettings.Resolution = Resolution.Hour
self.AddUniverse(self.UniverseCoarseFilter, self.UniverseFundamentalsFilter)
self.num_screener = 250
self.num_stocks = 20
self.formation_days = 126
self.lowmom = False
self.data = {}
self.setrebalancefreq = 60 # X days, update universe and momentum calculation
self.updatefinefilter = 0
self.symbols = None
self.reb_count = 0
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 90),
self.rebalance_when_out_of_the_market
)
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.BeforeMarketClose('SPY', 0),
self.record_vars
)
# Setup daily consolidation
symbols = self.SIGNALS + [self.MRKT] + self.FORPAIRS
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
# Warm up history
self.lookback = 252
self.history = self.History(symbols, self.lookback, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
self.update_history_shift()
# Benchmark = record SPY
self.spy = []
def UniverseCoarseFilter(self, coarse):
# Update at the beginning (by setting self.OUTDAY = -self.INI_WAIT_DAYS), every X days (rebalance frequency), and one day before waitdays are up
if not ((self.be_in and ((self.dcount-self.reb_count)==self.setrebalancefreq)) or (self.dcount==self.outday+self.adjwaitdays-1)):
self.updatefinefilter = 0
return Universe.Unchanged
self.updatefinefilter = 1
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)]
# rank the stocks by dollar volume
filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
return [x.Symbol for x in filtered[:500]]
def UniverseFundamentalsFilter(self, fundamental):
if self.updatefinefilter == 0:
return Universe.Unchanged
rank_cash_return = sorted(fundamental, key=lambda x: x.ValuationRatios.CashReturn, reverse=True)
rank_fcf_yield = sorted(fundamental, key=lambda x: x.ValuationRatios.FCFYield, reverse=True)
rank_roic = sorted(fundamental, key=lambda x: x.OperationRatios.ROIC.Value, reverse=True)
rank_ltd_to_eq = sorted(fundamental, key=lambda x: x.OperationRatios.LongTermDebtEquityRatio.Value, reverse=True)
combo_rank = {}
for i,ele in enumerate(rank_cash_return):
rank1 = i
rank2 = rank_fcf_yield.index(ele)
score = sum([rank1*0.5,rank2*0.5])
combo_rank[ele] = score
rank_value = dict(sorted(combo_rank.items(), key=lambda item:item[1], reverse=False))
stock_dict = {}
# assign a score to each stock, you can also change the rule of scoring here.
for i,ele in enumerate(rank_roic):
rank1 = i
rank2 = rank_ltd_to_eq.index(ele)
rank3 = list(rank_value.keys()).index(ele)
score = sum([rank1*0.33,rank2*0.33,rank3*0.33])
stock_dict[ele] = score
# sort the stocks by their scores
#self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=False)
#sorted_symbol = [x[0] for x in self.sorted_stock]
self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=True)
self.sorted_symbol = [self.sorted_stock[i][0] for i in range(len(self.sorted_stock))]
top= self.sorted_symbol[:self.num_screener]
self.symbols = [x.Symbol for x in top]
#self.Log("100 fine-filtered stocks\n" + str(sorted([str(i.Value) for i in self.symbols])))
self.updatefinefilter = 0
self.reb_count = self.dcount
return self.symbols
def OnSecuritiesChanged(self, changes):
for security in changes.RemovedSecurities:
symbol_data = self.data.pop(security.Symbol, None)
if symbol_data:
symbol_data.dispose()
for security in changes.AddedSecurities:
if security.Symbol not in self.data:
self.data[security.Symbol] = SymbolData(security.Symbol, self.formation_days, self)
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-self.lookback:]
self.update_history_shift()
def update_history_shift(self):
self.history_shift = self.history.rolling(11, center=True).mean().shift(60)
def rebalance_when_out_of_the_market(self):
# Returns sample to detect extreme observations
returns_sample = (self.history / self.history_shift - 1)
# Reverse code USDX: sort largest changes to bottom
returns_sample[self.USDX] = returns_sample[self.USDX] * (-1)
# For pairs, take returns differential, reverse coded
returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA])
returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU])
returns_sample['C_A'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU])
# Extreme observations; statist. significance = 1%
pctl_b = np.nanpercentile(returns_sample, 1, axis=0)
extreme_b = returns_sample.iloc[-1] < pctl_b
# Re-assess/disambiguate double-edged signals
median = np.nanmedian(returns_sample, axis=0)
abovemedian = returns_sample.iloc[-1] > median
### Interest rate expectations (cost of debt) may increase because the economic outlook improves (showing in rising input prices) = actually not a negative signal
extreme_b.loc[[self.DEBT]] = np.where((extreme_b.loc[[self.DEBT]].any()) & (abovemedian[[self.METL, self.NRES]].any()), False, extreme_b.loc[[self.DEBT]])
### GOLD/SLVA differential may increase due to inflation expectations which actually suggest an economic improvement = actually not a negative signal
try:
extreme_b.loc['G_S'] = np.where((extreme_b.loc[['G_S']].any()) & (abovemedian.loc[[self.INFL]].any()), False, extreme_b.loc['G_S'])
except:
pass
# Determine waitdays empirically via safe haven excess returns, 50% decay
self.WDadjvar = int(
max(0.50 * self.WDadjvar,
self.INI_WAIT_DAYS * max(1,
np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1)
))
)
self.adjwaitdays = min(60, self.WDadjvar)
# Determine whether 'in' or 'out' of the market
if (extreme_b[self.SIGNALS + self.pairlist]).any():
self.be_in = False
self.outday = self.dcount
self.trade({**dict.fromkeys(self.Portfolio.Keys, 0), **self.HLD_OUT})
if self.dcount >= self.outday + self.adjwaitdays:
self.be_in = True
# Update stock ranking/holdings, when swithing from 'out' to 'in' plus every X days when 'in' (set rebalance frequency)
if (self.be_in and not self.be_in_prior) or (self.be_in and (self.dcount==self.reb_count)):
self.rebalance()
#self.Plot("In Out", "in_market", int(self.be_in))
#self.Plot("In Out", "num_out_signals", extreme_b[self.SIGNALS + self.pairlist].sum())
#self.Plot("Wait Days", "waitdays", self.adjwaitdays)
self.be_in_prior = self.be_in
self.dcount += 1
def rebalance(self):
#self.Debug(str(self.Time) + "rebalance: be_in:" + str(self.be_in) + " flip_flag:" + str(self.flip_flag))
if self.symbols is None: return
symbols = self.calc_return(self.symbols)
#self.Log("The 10 selected stocks:\n" + str(sorted([str(i) for i in symbols])), end ="-")
#self.Log("Sell the following current holdings:\n" + str(sorted([str(i) for i in list(dict.fromkeys(set([x.Symbol for x in self.Portfolio.Values if x.Invested]) - set(symbols)))])), end ="-")
weight = 0.99/len(symbols)
self.trade({**dict.fromkeys(symbols, weight),
**dict.fromkeys(list(dict.fromkeys(set([x.Symbol for x in self.Portfolio.Values if x.Invested]) - set(symbols))), 0),
**dict.fromkeys(self.HLD_OUT, 0)})
def calc_return(self, stocks):
ready = [self.data[symbol] for symbol in stocks if self.data[symbol].Roc.IsReady]
sorted_by_roc = sorted(ready, key=lambda x: x.Roc.Current.Value, reverse = not self.lowmom)
return [symbol_data.Symbol for symbol_data in sorted_by_roc[:self.num_stocks] ]
def trade(self, weight_by_sec):
buys = []
for sec, weight in weight_by_sec.items():
# Check that we have data in the algorithm to process a trade
if not self.CurrentSlice.ContainsKey(sec) or self.CurrentSlice[sec] is None:
continue
cond1 = weight == 0 and self.Portfolio[sec].IsLong
cond2 = weight > 0 and not self.Portfolio[sec].Invested
if cond1 or cond2:
quantity = self.CalculateOrderQuantity(sec, weight)
if quantity > 0:
buys.append((sec, quantity))
elif quantity < 0:
self.Order(sec, quantity)
for sec, quantity in buys:
self.Order(sec, quantity)
def record_vars(self):
self.spy.append(self.history[self.MRKT].iloc[-1])
spy_perf = self.spy[-1] / self.spy[0] * self.cap
self.Plot('Strategy Equity', 'SPY', spy_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue
self.Plot('Holdings', 'leverage', round(account_leverage, 2))
class SymbolData(object):
def __init__(self, symbol, roc_period, algorithm):
self.Symbol = symbol
self.Roc = RateOfChange(roc_period)
self.algorithm = algorithm
self.consolidator = algorithm.ResolveConsolidator(symbol, Resolution.Daily)
algorithm.RegisterIndicator(symbol, self.Roc, self.consolidator)
# Warm up ROC
history = algorithm.History(symbol, roc_period, Resolution.Daily)
if history.empty or 'close' not in history.columns:
return
for index, row in history.loc[symbol].iterrows():
self.Roc.Update(index, row['close'])
def dispose(self):
self.algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.consolidator)