| Overall Statistics |
|
Total Orders 13 Average Win 122.38% Average Loss -30.10% Compounding Annual Return 0.143% Drawdown 86.300% Expectancy 1.026 Start Equity 100000 End Equity 100859.47 Net Profit 0.859% Sharpe Ratio 0.191 Sortino Ratio 0.241 Probabilistic Sharpe Ratio 1.253% Loss Rate 60% Win Rate 40% Profit-Loss Ratio 4.07 Alpha 0.004 Beta 1.03 Annual Standard Deviation 0.482 Annual Variance 0.233 Information Ratio 0.014 Tracking Error 0.449 Treynor Ratio 0.09 Total Fees $303.81 Estimated Strategy Capacity $3000.00 Lowest Capacity Asset SATO XSGUM9B6ZA79 Portfolio Turnover 0.50% Drawdown Recovery 139 Avg. Lost% Per Losser -33.27% Avg. Win% Per Winner 83.74% Max Win% 222.04% Max Loss% -68.84% *Profit Ratio 1.0 |
'''
Usage:
def Initialize(self):
self.log = Log(self)
# code xxxxxx
self.log.log("---->1")
'''
from AlgorithmImports import *
import time
class Log():
def __init__(self, algo):
self.timer = round(time.time() * 1000)
self.algo = algo
self.maxLine = 400
self.count = 0
self.debug(f"Live mode={self.algo.live_mode}.....Log Initialized")
def log(self, message):
self.algo.Log(f"[LOG] {message}")
def info(self, message):
now = round(time.time() * 1000)
timer = (now - self.timer) / 1000
self.timer = now
if (self.algo.Time <= self.algo.Time.replace(hour=9, minute=35)):
self.algo.Log(f"[INFO] {message}")
def debug(self, message):
if (self.count < self.maxLine or self.algo.live_mode):
self.algo.Log(f"[DEUBG] {message}")
self.count += 1
def live(self, message):
if self.algo.live_mode:
self.algo.Log(f"[DEUBG] {message}")
# ================================================================================
# DISCLAIMER
# ================================================================================
# This code is provided free of charge for EDUCATIONAL PURPOSES ONLY. Users are
# granted permission to study, modify, and redistribute this script for non-
# commercial learning and research.
#
# The author and developers of this code assume NO LIABILITY for any financial
# losses, trading damages, or missed opportunities resulting from the use or
# misuse of this algorithm. Quantitative trading involves significant risk,
# and past performance is not indicative of future results
#
# This code is provided "AS IS" without any warranties. The author does not
# provide technical support, bug fixes, or maintenance for this script.
# Users are responsible for their own due diligence and backtesting before
# considering any live deployment
from AlgorithmImports import *
from datetime import timedelta, datetime
from security_initializer import CustomSecurityInitializer
from utils import Utils
from log import Log
'''
Scope: All in S&P500 best performance constituents
'''
# lean project-create --language python "ALLIN01"
# lean cloud backtest "ALLIN01" --push --open
class ALLIN01(QCAlgorithm):
def initialize(self):
# Set backtest range and initial capital
self.set_start_date(2020, 1, 1)
self.set_end_date(2025, 12, 31)
self.init_cash = 100000
self.set_cash(self.init_cash) # Set Strategy Cash
# Define the benchmark and the base ETF for constituent selection (SPY)
self._symbol = self.add_equity("SPY", Resolution.HOUR).Symbol
''' We pick the best performing of non-leveraged ETFs (available to trade in major exchange only) from previous year and hold for a year
source:
2019 best performing ETF: https://www.etf.com/sections/news/best-performing-etfs-2019
2020 best performing ETF: https://www.statmuse.com/money/ask/best-performing-etf-in-2020
2021 best performing ETF: https://www.etf.com/sections/news/best-performing-etfs-2021
2022 best performing ETF: https://www.etf.com/sections/news/best-performing-etfs-2022
2023 best performing ETF: https://www.etf.com/sections/etf-basics/best-performing-etfs-2023
2024 best performing ETF: https://www.investing.com/analysis/3-topperforming-nonleveraged-etfs-from-2024-and-into-2025-200655112
'''
self.picked = {
2020: "TAN", # Invesco Solar ETF
2021: "CN", # China Fund
2022: "BDRY", # Breakwave Dry Bulk Shipping
2023: "TUR", # iShares MSCI Turkey ETF
2024: "WGMI", # Valkyrie Bitcoin Miners ETF
2025: "SATO" # Invesco Alerian Galaxy Crypto Economy
}
self.assets = list(self.picked.values())
for ticker in self.assets:
self.add_equity(ticker, Resolution.HOUR).symbol
self.log = Log(self)
self.utils = Utils(self, self._symbol)
self.schedule.on(self.date_rules.every_day(), self.time_rules.before_market_close(self._symbol, 0), self.utils.plot)
self.schedule.on(self.date_rules.every_day(),
self.time_rules.after_market_open(self._symbol, 1),
self.market_open)
def on_end_of_algorithm(self):
self.utils.stats()
def market_open(self):
holding_symbols: list[Symbol] = [
holding.symbol for holding in self.portfolio.values()
if holding.quantity != 0
]
if holding_symbols != self.picked[self.time.year]:
self.set_holdings(self.picked[self.time.year], 1.0, liquidate_existing_holdings=True)# region imports
from AlgorithmImports import *
# endregion
class CustomSecurityInitializer(BrokerageModelSecurityInitializer):
def __init__(self, brokerage_model: IBrokerageModel, security_seeder: ISecuritySeeder) -> None:
super().__init__(brokerage_model, security_seeder)
def initialize(self, security: Security) -> None:
super().initialize(security)
security.set_slippage_model(VolumeShareSlippageModel())
security.set_settlement_model(ImmediateSettlementModel())
security.set_leverage(1.0)
security.set_buying_power_model(CashBuyingPowerModel())
security.set_fee_model(InteractiveBrokersFeeModel())
security.set_margin_model(SecurityMarginModel.NULL)
from AlgorithmImports import *
from Newtonsoft.Json import JsonConvert
import System
import psutil
class Utils():
def __init__(self, algo, ticker):
self.algo = algo
self.ticker = ticker
self.mkt = []
self.insights_key = f"{self.algo.project_id}/Live_{self.algo.live_mode}_insights"
self.algo.set_benchmark(ticker)
self._initial_portfolio_value = self.algo.init_cash
self._initial_benchmark_price = 0
self._portfolio_high_watermark = 0
self.init_chart()
def init_chart(self):
chart_name = "Strategy Performance"
chart = Chart(chart_name)
strategy_series = Series("Strategy", SeriesType.LINE, 0, "$")
strategy_series.color = Color.ORANGE
chart.add_series(strategy_series)
benchmark_series = Series("Benchmark", SeriesType.LINE, 0, "$")
benchmark_series.color = Color.LIGHT_GRAY
chart.add_series(benchmark_series)
drawdown_series = Series("Drawdown", SeriesType.LINE, 1, "%")
drawdown_series.color = Color.INDIAN_RED
chart.add_series(drawdown_series)
allocation_series = Series("Allocation", SeriesType.LINE, 2, "%")
allocation_series.color = Color.CORNFLOWER_BLUE
chart.add_series(allocation_series)
holding_series = Series("Holdings", SeriesType.LINE, 3, "")
holding_series.color = Color.YELLOW_GREEN
chart.add_series(holding_series)
self.algo.add_chart(chart)
def plot(self):
if self.algo.live_mode or self.algo.is_warming_up:
return
# Capture initial reference values
if self._initial_portfolio_value == 0.0:
self._initial_portfolio_value = float(self.algo.portfolio.total_portfolio_value)
benchmark_price = float(self.algo.securities[self.algo._symbol].price)
if self._initial_benchmark_price == 0.0 and benchmark_price > 0.0:
self._initial_benchmark_price = benchmark_price
# Ensure both initial values are set
if self._initial_portfolio_value == 0.0 or self._initial_benchmark_price == 0.0:
return
# Current values
current_portfolio_value = float(self.algo.portfolio.total_portfolio_value)
# Defensive check (avoid division by zero)
if self._initial_portfolio_value == 0.0 or self._initial_benchmark_price == 0.0:
return
# Normalize (start at 1.0)
normalized_portfolio = current_portfolio_value / self._initial_portfolio_value
normalized_benchmark = benchmark_price / self._initial_benchmark_price
current_value = self.algo.portfolio.total_portfolio_value
if current_value > self._portfolio_high_watermark:
self._portfolio_high_watermark = current_value
drawdown = 0.0
if self._portfolio_high_watermark != 0.0:
drawdown = (current_value - self._portfolio_high_watermark) / self._portfolio_high_watermark * 100.0
holding_count = 0
for symbol in list(self.algo.securities.keys()):
if symbol is None:
continue
holding = self.algo.portfolio[symbol]
if holding is None or not holding.invested:
continue
holding_count += 1
chart_name = "Strategy Performance"
self.algo.plot(chart_name, "Drawdown", drawdown)
self.algo.plot(chart_name, "Strategy", normalized_portfolio*self.algo.init_cash)
self.algo.plot(chart_name, "Benchmark", normalized_benchmark*self.algo.init_cash)
self.algo.plot(chart_name, "Allocation", round(self.algo.portfolio.total_holdings_value / self.algo.portfolio.total_portfolio_value,2)*100)
self.algo.plot(chart_name, "Holdings", holding_count)
self.algo.plot('Strategy Equity', self.ticker, normalized_benchmark*self.algo.init_cash)
def pctc(no1, no2):
return((float(str(no2))-float(str(no1)))/float(str(no1)))
def stats(self):
df = None
trades = self.algo.trade_builder.closed_trades
for trade in trades:
data = {
'symbol': trade.symbol,
'time': trade.entry_time,
'entry_price': trade.entry_price,
'exit_price': trade.exit_price,
'pnl': trade.profit_loss,
'pnl_pct': (trade.exit_price - trade.entry_price)/trade.entry_price,
}
df = pd.concat([pd.DataFrame(data=data, index=[0]), df])
if df is not None:
profit = df.query('pnl >= 0')['pnl'].sum()
loss = df.query('pnl < 0')['pnl'].sum()
avgWinPercentPerWin = "{0:.2%}".format(df.query('pnl >= 0')['pnl_pct'].mean())
avgLostPercentPerLost = "{0:.2%}".format(df.query('pnl < 0')['pnl_pct'].mean())
maxLost = "{0:.2%}".format(df.query('pnl < 0')['pnl_pct'].min())
maxWin = "{0:.2%}".format(df.query('pnl > 0')['pnl_pct'].max())
self.algo.set_summary_statistic("*Profit Ratio", round(profit / abs(loss),2))
self.algo.set_summary_statistic("Avg. Win% Per Winner", avgWinPercentPerWin)
self.algo.set_summary_statistic("Avg. Lost% Per Losser", avgLostPercentPerLost)
self.algo.set_summary_statistic("Max Loss%", maxLost)
self.algo.set_summary_statistic("Max Win%", maxWin)
def read_insight(self):
if self.algo.object_store.contains_key(self.insights_key) and self.algo.live_mode:
insights = self.algo.object_store.read_json[System.Collections.Generic.List[Insight]](self.insights_key)
self.algo.log.debug(f"Read {len(insights)} insight(s) from the Object Store")
self.algo.insights.add_range(insights)
#self.algo.object_store.delete(self.insights_key)
def store_insight(self):
if self.algo.live_mode:
insights = self.algo.insights.get_insights(lambda x: x.is_active(self.algo.utc_time))
# If we want to save all insights (expired and active), we can use
# insights = self.insights.get_insights(lambda x: True)
self.algo.log.debug(f"Save {len(insights)} insight(s) to the Object Store.")
content = ','.join([JsonConvert.SerializeObject(x) for x in insights])
self.algo.object_store.save(self.insights_key, f'[{content}]')
def trace_memory(self, name):
self.algo.log.debug(f"[{name}] RAM memory % used: {psutil.virtual_memory()[2]} / RAM Used (GB): {round(psutil.virtual_memory()[3]/1000000000,2)}")