| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 6.421 Tracking Error 0.111 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# Highest Correlated Pair
class HighestCorrelatedPair(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 5, 9)
self.SetEndDate(2021, 5, 10)
self.SetCash(10000)
currencies = ['EURUSD', 'USDJPY', 'GBPUSD', 'USDCAD', 'AUDUSD', 'NZDUSD', 'EURJPY']
self.currencies = [self.AddForex(ticker, Resolution.Hour).Symbol for ticker in currencies]
self.num_currencies = 2
self.HighestCorrelated = []
def OnData(self, data):
history = self.History(self.currencies, 100, Resolution.Hour)
returns = history.unstack(level = 1).close.transpose().pct_change().dropna()
correl = returns.corr()
selected = []
for index, row in correl.iteritems():
corr_rank = row.mean()
selected.append((index, corr_rank))
self.HighestCorrelated = sorted(selected, key = lambda x: x[1])[-self.num_currencies:]
self.Debug(self.HighestCorrelated)