| Overall Statistics |
|
Total Trades 4303 Average Win 0.19% Average Loss -0.19% Compounding Annual Return -4.139% Drawdown 26.600% Expectancy -0.063 Net Profit -11.941% Sharpe Ratio -0.233 Loss Rate 53% Win Rate 47% Profit-Loss Ratio 0.98 Alpha -0.11 Beta 0.593 Annual Standard Deviation 0.118 Annual Variance 0.014 Information Ratio -1.536 Tracking Error 0.109 Treynor Ratio -0.046 Total Fees $26938.36 |
from System.Collections.Generic import List
from QuantConnect.Data.UniverseSelection import *
import decimal as d
class EmaCrossUniverseSelectionAlgorithm(QCAlgorithm):
'''In this algorithm we demonstrate how to define a universe as a combination of use the coarse fundamental data and fine fundamental data'''
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2012,01,01) #Set Start Date
self.SetEndDate(2015,01,03) #Set End Date
self.SetCash(100000) #Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
self.UniverseSettings.Leverage = 2
self.coarse_count = 10
self.averages = { };
# this add universe method accepts two parameters:
# - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
self.AddUniverse(self.CoarseSelectionFunction)
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def CoarseSelectionFunction(self, coarse):
# We are going to use a dictionary to refer the object that will keep the moving averages
for cf in coarse:
if cf.Symbol not in self.averages:
self.averages[cf.Symbol] = SymbolData(cf.Symbol)
# Updates the SymbolData object with current EOD price
avg = self.averages[cf.Symbol]
avg.update(cf.EndTime, cf.Price)
# Filter the values of the dict: we only want up-trending securities
values = filter(lambda x: x.is_uptrend, self.averages.values())
# Sorts the values of the dict: we want those with greater difference between the moving averages
values.sort(key=lambda x: x.scale, reverse=False)
# we need to return only the symbol objects
list = List[Symbol]()
for x in values[:self.coarse_count]:
list.Add(x.symbol)
return list
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
# liquidate removed securities
for security in changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
# we want 20% allocation in each security in our universe
for security in changes.AddedSecurities:
self.SetHoldings(security.Symbol, 0.2)
class SymbolData(object):
def __init__(self, symbol):
self.symbol = symbol
self.tolerance = d.Decimal(1.01)
self.fast = ExponentialMovingAverage(100)
self.slow = ExponentialMovingAverage(300)
self.is_uptrend = False
self.scale = 0
def update(self, time, value):
datapoint = IndicatorDataPoint(time, value)
if self.fast.Update(datapoint) and self.slow.Update(datapoint):
fast = self.fast.Current.Value
slow = self.slow.Current.Value
self.is_uptrend = fast > slow * self.tolerance
if self.is_uptrend:
self.scale = (fast - slow) / ((fast + slow) / 2)