| Overall Statistics |
|
Total Trades 1395 Average Win 4.06% Average Loss -0.48% Compounding Annual Return 47.511% Drawdown 18.800% Expectancy 1.107 Net Profit 4026.749% Sharpe Ratio 1.492 Probabilistic Sharpe Ratio 80.983% Loss Rate 78% Win Rate 22% Profit-Loss Ratio 8.46 Alpha 0.246 Beta 1.318 Annual Standard Deviation 0.292 Annual Variance 0.085 Information Ratio 1.312 Tracking Error 0.222 Treynor Ratio 0.33 Total Fees $104380.16 Estimated Strategy Capacity $23000000.00 Lowest Capacity Asset TMF UBTUG7D0B7TX |
## T. Smith - Reductionist ROC comparison XLI-XLU - Faster trading - Long SPY only - Sharpe >1 since 1999 - Inspired by Vladimir & Peter Guenther
import numpy as np
class DualMomentumInOut(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2012, 1, 1)
self.cap = 100000
self.RETURN = 10
self.STK = self.AddEquity('TQQQ', Resolution.Minute).Symbol
self.HDG_1 = self.AddEquity('TMF', Resolution.Minute).Symbol
self.SVXY = self.AddEquity('SVXY',Resolution.Minute).Symbol
self.XLI = self.AddEquity('XLI', Resolution.Hour).Symbol
self.XLU = self.AddEquity('XLU', Resolution.Hour).Symbol
self.MKT = self.AddEquity('SPY', Resolution.Daily).Symbol
self.pairs = [self.XLI, self.XLU]
self.wt = {}
self.real_wt = {}
self.mkt = []
self.SetWarmUp(timedelta(350))
self.AddEquity('SVXY',Resolution.Minute)
res = Resolution.Daily
self.uvxy = self.AddEquity('UVXY',res).Symbol
self.bb = self.BB(self.uvxy,10,2,res)
self.sma = self.SMA(self.uvxy,4,res)
self.rc = self.RC(self.uvxy,6,0.3,res)
self.trigger=False
self.buy=False
self.hold=False
self.sell=False
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(TimeSpan.FromMinutes(240)),
self.daily_check)
symbols = self.pairs
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(hours=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
self.history = self.History(symbols, self.RETURN + 1, Resolution.Hour)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-(self.RETURN + 1):]
def OnData(self, data):
#vix check
if self.bb.IsReady and data.ContainsKey(self.uvxy) and self.sma.IsReady:
vix=data[self.uvxy].Close
if self.rc.UpperChannel.Current.Value<vix:
self.trigger=True
if self.trigger and self.sma.Current.Value>vix:
self.buy=True
if self.hold and (vix<(self.bb.MiddleBand.Current.Value-self.bb.StandardDeviation.Current.Value)):
self.sell=True
if self.buy and data.ContainsKey('SVXY'):
self.wt[self.SVXY] = 0.2
self.wt[self.uvxy] = 0
self.trigger=False
self.buy=False
self.hold=True
if data.ContainsKey('SVXY') and (self.sell or self.Portfolio['SVXY'].UnrealizedProfitPercent<-0.04):
self.wt[self.SVXY] = 0
self.wt[self.uvxy] = 0.2
self.hold=False
self.sell=False
self.trade()
def daily_check(self):
#industrial utilities check
r = self.history.pct_change(self.RETURN).iloc[-1]
if (r[self.XLI] < r[self.XLU]):
self.wt[self.STK] = 0.2
self.wt[self.HDG_1] = 0.2
self.trade()
else:
self.wt[self.STK] = 0.5
self.wt[self.HDG_1] = 0.2
self.trade()
def trade(self):
for sec, weight in self.wt.items():
if weight == 0 and self.Portfolio[sec].IsLong:
self.Liquidate(sec)
cond1 = weight == 0 and self.Portfolio[sec].IsLong
cond2 = weight > 0 and not self.Portfolio[sec].Invested
if cond1 or cond2:
self.SetHoldings(sec, weight)
def OnEndOfDay(self):
mkt_price = self.Securities[self.MKT].Close
self.mkt.append(mkt_price)
mkt_perf = self.mkt[-1] / self.mkt[0] * self.cap
self.Plot('Strategy Equity', 'SPY', mkt_perf)
for sec, weight in self.wt.items():
self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4)
self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3))