| Overall Statistics |
|
Total Trades 294 Average Win 1.20% Average Loss -0.98% Compounding Annual Return 16.464% Drawdown 17.300% Expectancy 0.422 Net Profit 114.330% Sharpe Ratio 1.406 Probabilistic Sharpe Ratio 73.771% Loss Rate 36% Win Rate 64% Profit-Loss Ratio 1.23 Alpha 0.084 Beta 0.472 Annual Standard Deviation 0.124 Annual Variance 0.015 Information Ratio -0.128 Tracking Error 0.132 Treynor Ratio 0.369 Total Fees $264.43 Estimated Strategy Capacity $7500000000.00 Lowest Capacity Asset SPY 31NRZMR9RG0KM|SPY R735QTJ8XC9X |
# https://quantpedia.com/strategies/volatility-risk-premium-effect/
#
# Each month, at-the-money straddle, with one month until maturity, is sold at the bid price with a 5% option premium, and an offsetting 15%
# out-of-the-money puts are bought (at the ask price) as insurance against a market crash. The remaining cash and received option premium are
# invested in the index. The strategy is rebalanced monthly.
class VolatilityRiskPremiumEffect(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2016, 6, 2)
self.SetCash(100000)
data = self.AddEquity("SPY", Resolution.Minute)
data.SetLeverage(5)
self.symbol = data.Symbol
option = self.AddOption("SPY", Resolution.Minute)
option.SetFilter(-20, 20, 25, 35)
self.last_day = -1
def OnData(self,slice):
# Check once a day.
if self.Time.day == self.last_day:
return
self.last_day = self.Time.day
for i in slice.OptionChains:
chains = i.Value
if not self.Portfolio.Invested:
# divide option chains into call and put options
calls = list(filter(lambda x: x.Right == OptionRight.Call, chains))
puts = list(filter(lambda x: x.Right == OptionRight.Put, chains))
# if lists are empty return
if not calls or not puts: return
underlying_price = self.Securities[self.symbol].Price
expiries = [i.Expiry for i in puts]
# determine expiration date nearly one month
expiry = min(expiries, key=lambda x: abs((x.date()-self.Time.date()).days-30))
strikes = [i.Strike for i in puts]
# determine at-the-money strike
strike = min(strikes, key=lambda x: abs(x-underlying_price))
# determine 15% out-of-the-money strike
otm_strike = min(strikes, key = lambda x:abs(x - float(0.85) * underlying_price))
atm_call = [i for i in calls if i.Expiry == expiry and i.Strike == strike]
atm_put = [i for i in puts if i.Expiry == expiry and i.Strike == strike]
otm_put = [i for i in puts if i.Expiry == expiry and i.Strike == otm_strike]
if atm_call and atm_put and otm_put:
options_q = int(self.Portfolio.MarginRemaining / (underlying_price * 100))
# Set max leverage.
self.Securities[atm_call[0].Symbol].MarginModel = BuyingPowerModel(5)
self.Securities[atm_put[0].Symbol].MarginModel = BuyingPowerModel(5)
self.Securities[otm_put[0].Symbol].MarginModel = BuyingPowerModel(5)
# sell at-the-money straddle
self.Sell(atm_call[0].Symbol, options_q)
self.Sell(atm_put[0].Symbol, options_q)
# buy 15% out-of-the-money put
self.Buy(otm_put[0].Symbol, options_q)
# buy index.
self.SetHoldings(self.symbol, 1)
invested = [x.Key for x in self.Portfolio if x.Value.Invested]
if len(invested) == 1:
self.Liquidate(self.symbol)