| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
import numpy as np
import decimal as d
### <summary>
### Basic template algorithm simply initializes the date range and cash. This is a skeleton
### framework you can use for designing an algorithm.
### </summary>
class BasicTemplateAlgorithm(QCAlgorithm):
'''Basic template algorithm simply initializes the date range and cash'''
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2020,11,27) #Set Start Date
self.SetEndDate(2020,11,28) #Set End Date
self.SetCash(1000) #Set Strategy Cash
self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash)
# Find more symbols here: http://quantconnect.com/data
symbol = self.AddCrypto("BTCUSD", Resolution.Minute).Symbol
#self.AddCrypto("ETHUSD", Resolution.Minute)
#self.AddCrypto("BTCEUR", Resolution.Minute)
#symbol = self.AddCrypto("LTCUSD", Resolution.Minute).Symbol
# create two moving averages
self.fast = self.EMA(symbol, 30, Resolution.Minute)
self.slow = self.EMA(symbol, 60, Resolution.Minute)
def OnData(self, data):
# via a tradebar dictionary (symbol - bar)
if data.ContainsKey("BTCUSD") and data["BTCUSD"] is not None:
data.Bars["BTCUSD"].Close
# or via a ticks list:
#data.Ticks["BTCUSD"][0].Close