| Overall Statistics |
|
Total Orders 11198 Average Win 1.62% Average Loss -0.81% Compounding Annual Return 118.587% Drawdown 59.000% Expectancy 0.128 Start Equity 1000000 End Equity 109793712.32 Net Profit 10879.371% Sharpe Ratio 1.582 Sortino Ratio 2.63 Probabilistic Sharpe Ratio 64.409% Loss Rate 62% Win Rate 38% Profit-Loss Ratio 2.00 Alpha 1.031 Beta -0.192 Annual Standard Deviation 0.643 Annual Variance 0.413 Information Ratio 1.394 Tracking Error 0.674 Treynor Ratio -5.294 Total Fees $17291945.18 Estimated Strategy Capacity $26000000.00 Lowest Capacity Asset BTC YSVEMP6UTIIP Portfolio Turnover 1732.12% |
# region imports
from AlgorithmImports import *
# endregion
class NoiseAreaBreakoutAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2019, 5, 1)
self.set_end_date(2025, 5, 1)
self.set_cash(1_000_000)
# Set some parameters.
self._trading_interval_length = timedelta(minutes=30)
self._lookback = 14 # days
self._target_volatility = 0.02 # 0.02 = 2%
self._max_exposure = 4 # 4 = 400%
self._max_positions = 3
# Add a universe of Futures contracts to trade.
self._futures = []
tickers = [
Futures.Currencies.BTC,
Futures.Indices.SP_500_E_MINI,
Futures.Indices.NASDAQ_100_E_MINI,
Futures.Indices.DOW_30_E_MINI,
]
for ticker in tickers:
future = self.add_future(
ticker,
data_mapping_mode=DataMappingMode.LAST_TRADING_DAY,
data_normalization_mode=DataNormalizationMode.BACKWARDS_PANAMA_CANAL,
contract_depth_offset=0
)
future.set_filter(0, 180)
future.vwap = self.vwap(future.symbol)
future.daily_volatility = IndicatorExtensions.of(StandardDeviation(self._lookback), self.roc(future.symbol, 1, Resolution.DAILY))
future.avg_move_by_interval = {}
future.yesterdays_close = None
future.todays_open = None
self._futures.append(future)
# Add a Scheduled Event to place orders 30 minutes after market open.
date_rule = self.date_rules.every_day(future.symbol)
self.schedule.on(date_rule, self.time_rules.after_market_close(future.symbol, 1), lambda future=future: setattr(future, 'yesterdays_close', future.price))
self.schedule.on(date_rule, self.time_rules.after_market_open(future.symbol, 1), lambda future=future: setattr(future, 'todays_open', future.open))
self.schedule.on(date_rule, self.time_rules.before_market_close(future.symbol, 1), lambda future=future: self.liquidate(future.mapped))
self.schedule.on(self.date_rules.every_day(), self.time_rules.every(self._trading_interval_length), self._rebalance)
# Set a warm-up period to warm-up the indicators.
self.set_warm_up(timedelta(30))
def _rebalance(self):
t = self.time
trading_interval = (t.hour, t.minute)
unchanged_positions = 0
entry_targets = []
exit_targets = []
for future in self._futures:
# Wait until the market is open.
if (not future.yesterdays_close or
not future.todays_open or
not future.exchange.hours.is_open(t, False) or
not future.exchange.hours.is_open(t - self._trading_interval_length, False)):
if future.mapped and self.portfolio[future.mapped].invested:
unchanged_positions += 1
continue
# Create an indicator for this time interval if it doesn't already exist.
if trading_interval not in future.avg_move_by_interval:
future.avg_move_by_interval[trading_interval] = SimpleMovingAverage(self._lookback)
avg_move = future.avg_move_by_interval[trading_interval]
# Update the average move indicator.
move = abs(future.price / future.todays_open - 1)
if not avg_move.update(t, move):
continue
# Wait until the daily volatility indicator is ready.
if not future.daily_volatility.is_ready or not future.daily_volatility.current.value or self.is_warming_up:
continue
# Calculate the noise area.
upper_bound = max(future.yesterdays_close, future.todays_open) * (1+avg_move.current.value)
lower_bound = min(future.yesterdays_close, future.todays_open) * (1-avg_move.current.value)
# Scan for an entry.
weight = min(self._max_exposure, self._target_volatility/future.daily_volatility.current.value) / self._max_exposure / self._max_positions
contract = self.securities[future.mapped]
if not contract.holdings.is_long and future.price > upper_bound:
entry_targets = self._add_target(contract, weight, entry_targets)
elif not contract.holdings.is_short and future.price < lower_bound:
entry_targets = self._add_target(contract, -weight, entry_targets)
# Scan for an exit.
elif (contract.holdings.is_long and future.price < max(upper_bound, future.vwap.current.value) or
contract.holdings.is_short and future.price > min(lower_bound, future.vwap.current.value)):
exit_targets.append(PortfolioTarget(contract.symbol, 0))
# Record the open position.
elif contract.invested:
unchanged_positions += 1
# Plot the current state.
#self.plot('Weight', str(future.symbol), weight)
#self.plot('Noise Area', 'Upper Bound', upper_bound)
#self.plot('Noise Area', 'Lower Bound', lower_bound)
#self.plot('Noise Area', 'Price', future.price)
#self.plot('Noise Area', 'VWAP', future.vwap.current.value)
#self.plot('Volatility', 'Future', future.daily_volatility.current.value)
self.set_holdings(entry_targets[:self._max_positions-unchanged_positions] + exit_targets)
def _add_target(self, contract, weight, targets):
target = PortfolioTarget(contract.symbol, weight)
if not contract.invested:
return targets + [target]
# When flipping from long to short (or vice versa), insert at the beginning of the list to ensure the position changes.
return [target] + targets