| Overall Statistics |
|
Total Trades 211 Average Win 0.58% Average Loss -0.36% Compounding Annual Return 9.761% Drawdown 2.800% Expectancy -0.203 Net Profit 9.798% Sharpe Ratio 1.447 Probabilistic Sharpe Ratio 68.555% Loss Rate 70% Win Rate 30% Profit-Loss Ratio 1.62 Alpha 0.058 Beta 0.11 Annual Standard Deviation 0.056 Annual Variance 0.003 Information Ratio -1.645 Tracking Error 0.079 Treynor Ratio 0.74 Total Fees $169.50 Estimated Strategy Capacity $0 Lowest Capacity Asset GOOCV WIXFAP3975UU|GOOCV VP83T1ZUHROL |
from scipy.stats import norm
from datetime import timedelta
class IronCondorAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2017, 2, 1)
self.SetEndDate(2018, 2, 1)
self.SetCash(100000)
self.Debug('Starting Cash: ' + str(self.Portfolio.Cash))
# Add equities
self.AddUniverse(self.Universe.DollarVolume.Top(50))
self.equity = [x for x in self.ActiveSecurities]
self.equity.append(self.AddEquity("SPY", Resolution.Minute))
self.equity.append(self.AddEquity("EEM", Resolution.Minute))
self.equity.append(self.AddEquity("GOOG", Resolution.Minute))
self.equity.append(self.AddEquity("VCR", Resolution.Minute))
self.equity.append(self.AddEquity("SLY", Resolution.Minute))
self.equity.append(self.AddEquity("XLP", Resolution.Minute))
self.equity.append(self.AddEquity("ARKK", Resolution.Minute))
self.equity.append(self.AddEquity("XLY", Resolution.Minute))
self.equity.append(self.AddEquity("AAPL", Resolution.Minute))
self.stock_list = ["GOOG", "SPY", "VCR", "SLY", "EEM", "XLP", "ARKK", "XLY", "AAPL"]
for i in self.equity:
i.SetLeverage(1)
self.options = []
# Create an array of options for each symbol
for x in self.equity:
self.options.append(self.AddOption(x.Symbol, Resolution.Minute))
# Create symbol array
# self.symbols = [x for x.Symbol in self.options]
# Specify universe function
for x in self.options:
x.SetFilter(self.UniverseFunc)
# use the underlying equity GOOG as the benchmark
self.SetBenchmark("SPY")
self.counter = 0
self.liabilities = 0
self.SetWarmup(1)
# Set trading intervals
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen("SPY", 1), self.TradeOptions)
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(12, 0), self.TradeOptions)
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose("SPY", 10), self.TradeOptions)
# What I think is happening is it's sending a ton of data simultaneously
def OnData(self, slice):
self.most_recent_slice = slice
def TradeOptions(self):
# If there is undelying assets in portfolio at expiration, liquidate the stocks in order to roll into new contracts
# (Fixed) PROBLEM: is datetime retrieving now-now or backtest-now
self.Debug(str(x for x in self.Portfolio))
#This is a problem; it needs to be taylored to each option
if self.Portfolio.Invested:
self.AdjustOptions()
if not self.Portfolio.Invested and self.Time.hour != 0 and self.Time.minute != 0:
# List of optionchains for each security
self.AddToPortfolio()
def CloseCondor(self, x):
#CCC = Close Condor Called
self.Debug("CCC")
for symbol in x:
self.Liquidate(symbol)
def AdjustOptions(self):
if self.Portfolio.Invested:
# self.Debug("Portfolio.Invested Called " + str(self.Time))
for x in self.condor_list:
days_to_expiry = abs(x[0].Expiry - self.Time).days
# if this condor expires in 25+ days, leave it condor
if days_to_expiry > 25:
continue
elif days_to_expiry < 3.75:
self.CloseCondor(x)
# OTM Check
otm = True
for c in x:
if c.Right == 1: #put
if c.UnderlyingLastPrice - c.Strike < 0:
otm = False
else:
if c.UnderlyingLastPrice - c.Strike > 0:
otm = False
# If Condor is in the head region, close
if days_to_expiry <= 25 and otm:
self.CloseCondor(x)
#Clean out actual stocks
for ticker in self.stock_list:
self.SetHoldings(ticker, 0)
self.AddToPortfolio()
def AddToPortfolio(self):
self.condor_list = []
for i in self.most_recent_slice.OptionChains:
# self.Debug("AddToPortfolio Called")
# self.Debug("Iteration Number " + str(self.counter))
chain = i.Value
contract_list = [x for x in chain]
# if there is no optionchain or no contracts in this optionchain, pass the instance
if (self.most_recent_slice.OptionChains.Count == 0) or (len(contract_list) == 0):
continue
# sorted the optionchain by expiration date and choose the furthest date
expiry = sorted(chain,key = lambda x: x.Expiry)[-1].Expiry
# filter the call and put options from the contracts
put = [i for i in chain if i.Expiry == expiry and i.Right == 1]
self.Debug("Puts: " + str(x.Strike for x in put))
if len(put) > 2:
put_contracts = sorted(put,key = lambda x: x.Strike)
else:
continue
highest_put_strike = put_contracts[len(put_contracts) - 1].Strike
call = [i for i in chain if i.Expiry == expiry and i.Right == 0 and i.Strike > put[0].UnderlyingLastPrice]
if len(call) > 2:
call_contracts = sorted(call,key = lambda x: x.Strike)
else:
continue
# sorted the contracts according to their strike prices
self.Debug(put_contracts[len(put_contracts) - 1].UnderlyingSymbol.Value + ' ' + str(len(put_contracts)) + ' ' + str(len(call_contracts)))
# self.Debug('price= ' + str(put_contracts[0].UnderlyingLastPrice) + 'PUTS: ' + ' '.join(str([x.Strike for x in put_contracts])))
put_contracts = [i for i in put if i.Strike < i.UnderlyingLastPrice]
# self.Debug('CALLS: ' + ' '.join([x.Strike for x in call_contracts]))
put_contracts = sorted(put,key = lambda x: x.Strike)
if len(call_contracts) == 0 or len(put_contracts) == 0 : continue
otm_put_lower = put_contracts[0]
otm_put = put_contracts[len(put_contracts) - 1]
try:
otm_call = call_contracts[-10]
except IndexError:
otm_call = call_contracts[-1 * len(call_contracts)]
self.Debug("otm_call Index Error")
try:
otm_call_higher = call_contracts[-1]
except IndexError:
otm_call_higher = call_contracts[1]
self.Debug("otm_call_higher Index Error")
self.trade_contracts = [otm_call.Symbol,otm_call_higher.Symbol,otm_put.Symbol,otm_put_lower.Symbol]
self.condor_list.append([otm_call, otm_call_higher, otm_put, otm_put_lower])
self.Debug('Lower Put ' + str(otm_put_lower.Strike) + 'Higher Put ' + str(otm_put.Strike) + 'Lower Call: ' + str(otm_call.Strike) + 'Higher Call' + str(otm_call_higher.Strike))
expiry = otm_call_higher.Expiry
# if there is no securities in portfolio, trade the options
totalPrice = sum([x.AskPrice for x in [otm_call_higher, otm_put_lower]]) - otm_put.BidPrice - otm_call.BidPrice + otm_call.UnderlyingLastPrice
margin = self.Portfolio.GetMarginRemaining(otm_put_lower.UnderlyingSymbol, OrderDirection.Buy)
if margin > totalPrice * 4:
self.Debug("Passed Enough Cash Test. Cash: " + str(self.Portfolio.Cash))
self.Debug("Option Total Pricetag: " + str(totalPrice))
self.Buy(otm_put_lower.Symbol ,1)
self.Sell(otm_put.Symbol ,1)
self.Sell(otm_call.Symbol ,1)
self.Buy(otm_call_higher.Symbol ,1)
# Fix, this doesn't include premium
self.counter += 1
self.liabilities += 100 * otm_call.UnderlyingLastPrice - sum([x.AskPrice for x in [otm_call_higher, otm_put_lower]]) - otm_put.BidPrice - otm_call.BidPrice
def ExpectedValue(x):
# What will q be? 100? (that is assumed here)
mu = x[0].UnderlyingLastPrice
sigma = x[0].ImpliedVolatility
C = x[1].BidPrice + x[2].BidPrice - x[0].BidPrice - x[3].BidPrice
y = []
y[0] = norm.cdf(x[0].Strike, mu, sigma) * -100 * (x[1].Strike - x[0].Strike)
Ptwo = norm.cdf(x[1].Strike, mu, sigma) - norm.cdf(x[0].Strike, mu, sigma)
y[1] = Ptwo * -100
y[2] = 2
y[3] = 3
y[4] = 4
def OnOrderEvent(self, orderEvent):
self.Debug(str(orderEvent))
def UniverseFunc(self, universe):
return universe.IncludeWeeklys().Strikes(-15, 15).Expiration(timedelta(35), timedelta(50))