| Overall Statistics |
|
Total Trades 1719 Average Win 0.04% Average Loss -0.23% Compounding Annual Return 5.980% Drawdown 35.900% Expectancy 0.045 Net Profit 24.201% Sharpe Ratio 0.342 Loss Rate 11% Win Rate 89% Profit-Loss Ratio 0.18 Alpha -0.071 Beta 1.197 Annual Standard Deviation 0.194 Annual Variance 0.037 Information Ratio -0.368 Tracking Error 0.132 Treynor Ratio 0.055 Total Fees $1970.50 |
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.LinearRegression;
using MathNet.Numerics.Statistics;
using QuantConnect.Data;
using QuantConnect.Indicators;
using System;
using System.Collections.Generic;
using System.Linq;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// This algorithm uses Math.NET Numerics library, specifically Linear Algebra object (Vector and Matrix) and operations, in order to solve a portfolio optimization problem.
/// </summary>
public class MultiCorrelation : QCAlgorithm
{
private string[] _symbols = new string[]
{
// Using Meb Faber's GTAA paper assets:
"SPY", //
"AIG", //
"BAC" //
// Find more symbols here: http://quantconnect.com/data
};
private const double _targetReturn = 0.1;
private const double _riskFreeRate = 0.01;
private double _lagrangeMultiplier;
private double _portfolioRisk;
private Vector<double> _p;
private List<SymbolData> SymbolDataList;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
SetCash(100000); //Set Strategy Cash
SetStartDate(2013, 1, 1); //Set Start Date
SetEndDate(DateTime.Now.AddDays(-1)); //Set End Date
SymbolDataList = new List<SymbolData>();
foreach (var symbol in _symbols)
{
AddEquity(symbol, Resolution.Daily);
SymbolDataList.Add(new SymbolData(symbol, History(symbol, 200, Resolution.Daily)));
}
var X = Matrix<double>.Build.
DenseOfColumnArrays(SymbolDataList.Where(x => !x.Symbol.Equals("SPY")).Select(x => x.History));
var y = Vector<double>.Build.
DenseOfArray(SymbolDataList.Where(x => x.Symbol.Equals("SPY")).FirstOrDefault().History);
_p = MultipleRegression.NormalEquations(X, y);
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">Slice object keyed by symbol containing the stock data</param>
public override void OnData(Slice data)
{
foreach (var symbolData in SymbolDataList)
{
if (data.ContainsKey(symbolData.Symbol))
{
symbolData.Update(data[symbolData.Symbol]);
}
}
var y = (double)data["SPY"].Close;
var x = _p[0] * (double)data["AIG"].Close + _p[1] * (double)data["BAC"].Close;
if (x > y)
{
SetHoldings("AIG", .5);
SetHoldings("BAC", .5);
}
else
{
SetHoldings("AIG", -.5);
SetHoldings("BAC", -.5);
}
}
/// <summary>
/// Symbol Data class to store security data (Return, Risk, Weight)
/// </summary>
class SymbolData
{
private RollingWindow<double> _rollingHistory;
public Symbol Symbol { get; private set; }
public double[] History
{
get
{
return _rollingHistory.Select(x => x).ToArray();
}
}
public SymbolData(Symbol symbol, IEnumerable<BaseData> history)
{
Symbol = symbol;
_rollingHistory = new RollingWindow<double>(200);
foreach (var data in history)
{
Update(data);
}
}
public void Update(BaseData data)
{
if (data == null)
{
return;
}
else
{
_rollingHistory.Add((double)data.Value);
}
}
}
}
}