| Overall Statistics |
|
Total Trades 145 Average Win 0.26% Average Loss -0.13% Compounding Annual Return -1.935% Drawdown 3.300% Expectancy -0.079 Net Profit -0.484% Sharpe Ratio -0.254 Loss Rate 69% Win Rate 31% Profit-Loss Ratio 2.01 Alpha -0.183 Beta 8.557 Annual Standard Deviation 0.067 Annual Variance 0.004 Information Ratio -0.545 Tracking Error 0.067 Treynor Ratio -0.002 Total Fees $181.58 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from System import *
from QuantConnect import *
from QuantConnect.Data.Consolidators import *
from QuantConnect.Data.Market import *
from QuantConnect.Orders import OrderStatus
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Indicators import *
import numpy as np
from datetime import timedelta, datetime
### <summary>
### Example structure for structuring an algorithm with indicator and consolidator data for many tickers.
### </summary>
### <meta name="tag" content="consolidating data" />
### <meta name="tag" content="indicators" />
### <meta name="tag" content="using data" />
### <meta name="tag" content="strategy example" />
class MultipleSymbolConsolidationAlgorithm(QCAlgorithm):
# Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
def Initialize(self):
# This is the period of bars we'll be creating
BarPeriod = TimeSpan.FromMinutes(5)
BarPeriod15 = TimeSpan.FromMinutes(15)
# This is the period of our sma indicators
SimpleMovingAveragePeriod = 5
SimpleMovingAveragePeriod15 = 15
# This is the number of consolidated bars we'll hold in symbol data for reference
RollingWindowSize = 10
# Holds all of our data keyed by each symbol
self.Data = {}
self.Data15 = {}
# Contains all of our equity symbols
EquitySymbols = ["AAPL","SPY","IBM"]
self.PositionSize = (1/ len(EquitySymbols))
self.SetStartDate(2018, 9, 1)
self.SetEndDate(2018, 12, 1)
# initialize our equity data
for symbol in EquitySymbols:
equity = self.AddEquity(symbol)
self.Data[symbol] = SymbolData(equity.Symbol, BarPeriod, RollingWindowSize)
self.Data15[symbol] = SymbolData(equity.Symbol, BarPeriod15, RollingWindowSize)
# loop through all our symbols and request data subscriptions and initialize indicator
for symbol, symbolData in self.Data.items():
# define the indicator
symbolData.SMA = SimpleMovingAverage(self.CreateIndicatorName(symbol, "SMA" + str(SimpleMovingAveragePeriod), Resolution.Minute), SimpleMovingAveragePeriod)
symbolData.MACD = MovingAverageConvergenceDivergence(self.CreateIndicatorName(symbol, "MACD" + str(SimpleMovingAveragePeriod) , Resolution.Minute), 12, 26, 9, MovingAverageType.Exponential)
# define a consolidator to consolidate data for this symbol on the requested period
consolidator = TradeBarConsolidator(BarPeriod)
consolidator.DataConsolidated += self.OnDataConsolidated
# write up our consolidator to update the indicator
# we need to add this consolidator so it gets auto updates
self.SubscriptionManager.AddConsolidator(symbolData.Symbol, consolidator)
for symbol, symbolData15 in self.Data15.items():
symbolData15.SMA15 = SimpleMovingAverage(self.CreateIndicatorName(symbol, "SMA15" + str(SimpleMovingAveragePeriod15) , Resolution.Minute), SimpleMovingAveragePeriod)
symbolData15.MACD15 = MovingAverageConvergenceDivergence(self.CreateIndicatorName(symbol, "MACD15" + str(SimpleMovingAveragePeriod15) , Resolution.Minute), 12, 26, 9, MovingAverageType.Exponential)
# define a consolidator to consolidate data for this symbol on the requested period
consolidator15 = TradeBarConsolidator(BarPeriod15)
#consolidator15.DataConsolidated += self.OnDataConsolidated
# write up our consolidator to update the indicator
# we need to add this consolidator so it gets auto updates
self.SubscriptionManager.AddConsolidator(symbolData15.Symbol, consolidator15)
def OnDataConsolidated(self, sender, bar):
self.Data[bar.Symbol.Value].SMA.Update(bar.Time, bar.Close)
self.Data[bar.Symbol.Value].MACD.Update(bar.Time, bar.Close)
self.Data[bar.Symbol.Value].Bars.Add(bar)
self.Data15[bar.Symbol.Value].SMA15.Update(bar.Time, bar.Close)
self.Data15[bar.Symbol.Value].MACD15.Update(bar.Time, bar.Close)
#self.Data15[bar.Symbol.Value].Bars15.Add(bar)
# OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
# Argument "data": Slice object, dictionary object with your stock data
def OnData(self,data):
# loop through each symbol in our structure
for symbol in self.Data.keys():
symbolData = self.Data[symbol]
for symbol in self.Data15.keys():
symbolData15 = self.Data15[symbol]
# this check proves that this symbol was JUST updated prior to this OnData function being called
if not self.Portfolio[symbol].Invested and symbolData15.MACD15.Current.Value > symbolData15.MACD15.Signal.Current.Value and symbolData.MACD.Current.Value > 0 :
self.SetHoldings(symbol, self.PositionSize)
if self.Portfolio[symbol].Invested and symbolData.MACD.Current.Value < 0 :
self.Liquidate(symbol)
""" if symbolData.IsReady() and symbolData.WasJustUpdated(self.Time):
if not self.Portfolio[symbol].Invested:
self.MarketOrder(symbol, 1)"""
# End of a trading day event handler. This method is called at the end of the algorithm day (or multiple times if trading multiple assets).
# Method is called 10 minutes before closing to allow user to close out position.
def OnEndOfDay(self):
i = 0
for symbol in sorted(self.Data.keys()):
symbolData = self.Data[symbol]
# we have too many symbols to plot them all, so plot every other
i += 1
if symbolData.IsReady() and i%2 == 0:
self.Plot(symbol, symbol, symbolData.SMA.Current.Value)
class SymbolData(object):
def __init__(self, symbol, barPeriod, windowSize):
self.Symbol = symbol
# The period used when population the Bars rolling window
self.BarPeriod = barPeriod
# A rolling window of data, data needs to be pumped into Bars by using Bars.Update( tradeBar ) and can be accessed like:
# mySymbolData.Bars[0] - most first recent piece of data
# mySymbolData.Bars[5] - the sixth most recent piece of data (zero based indexing)
self.Bars = RollingWindow[IBaseDataBar](windowSize)
# The simple moving average indicator for our symbol
self.SMA = None
self.MACD = None
# Returns true if all the data in this instance is ready (indicators, rolling windows, ect...)
def IsReady(self):
return self.Bars.IsReady and self.SMA.IsReady and self.MACD.IsReady
# Returns true if the most recent trade bar time matches the current time minus the bar's period, this
# indicates that update was just called on this instance
def WasJustUpdated(self, current):
return self.Bars.Count > 0 and self.Bars[0].Time == current - self.BarPeriod
class SymbolData15(object):
def __init__(self, symbol, barPeriod15, windowSize):
self.Symbol = symbol
# The period used when population the Bars rolling window
self.BarPeriod15 = barPeriod15
# A rolling window of data, data needs to be pumped into Bars by using Bars.Update( tradeBar ) and can be accessed like:
# mySymbolData.Bars[0] - most first recent piece of data
# mySymbolData.Bars[5] - the sixth most recent piece of data (zero based indexing)
self.Bars15 = RollingWindow[IBaseDataBar](windowSize)
# The simple moving average indicator for our symbol
self.SMA15 = None
self.MACD15 = None
# Returns true if all the data in this instance is ready (indicators, rolling windows, ect...)
def IsReady(self):
return self.Bars15.IsReady and self.SMA15.IsReady and self.MACD15.IsReady
# Returns true if the most recent trade bar time matches the current time minus the bar's period, this
# indicates that update was just called on this instance
def WasJustUpdated(self, current):
return self.Bars15.Count > 0 and self.Bars15[0].Time == current - self.BarPeriod15