| Overall Statistics |
|
Total Trades 231 Average Win 1.56% Average Loss -0.57% Compounding Annual Return 2.992% Drawdown 21.000% Expectancy 0.098 Net Profit 11.303% Sharpe Ratio 0.383 Loss Rate 70% Win Rate 30% Profit-Loss Ratio 2.71 Alpha 0.109 Beta -3.807 Annual Standard Deviation 0.087 Annual Variance 0.008 Information Ratio 0.153 Tracking Error 0.087 Treynor Ratio -0.009 Total Fees $231.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Securities import *
from datetime import timedelta
import decimal as d
import numpy as np
from QuantConnect.Data.Market import TradeBar
from QuantConnect.Indicators import *
## Trend Following Algorithm
## A Simple Program to show the trend and trend following syste
class TrendFollowingAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2013, 1, 1)
self.SetEndDate(2016, 8, 18)
self.SetCash(10000)
self._tolerance = d.Decimal(1 + 0.001)
self._mult_factor = d.Decimal(0.5 + 0.001)
self.IsUpTrend = False
self.IsDownTrend = False
self.SetWarmUp(200)
# Adds SPY to be used in our SMA indicators
equity = self.AddEquity("SPY", Resolution.Hour)
self.symbol = equity.Symbol
#Add SMA indicators
self.SMA10 = self.EMA(self.symbol, 10, Resolution.Hour)
self.SMA20 = self.EMA(self.symbol, 20, Resolution.Hour)
self.SMA200 = self.EMA(self.symbol, 200, Resolution.Hour)
#Add Stochastics
self.oversold = 20
self.overbought = 80
self.midpoint = 50
#initializing stochastic
KPeriod = 14
DPeriod = 3
self.sto = self.STO(self.symbol,14,KPeriod,DPeriod, Resolution.Hour)
#ATR
self.atr = self.ATR(self.symbol,14,Resolution.Hour)
#RSI
self.rsi = self.RSI(self.symbol,14,Resolution.Hour)
# Creates a Rolling Window indicator to keep the 4 TradeBar
self.window = RollingWindow[TradeBar](4) # For other security types, use QuoteBar
#Consolidator
OneHourConsolidator = TradeBarConsolidator(timedelta(minutes=60))
# attach our event handler. the event handler is a function that will
# be called each time we produce a new consolidated piece of data.
OneHourConsolidator.DataConsolidated += self.HourBarHandler
# this call adds our 60 minute consolidator to
# the manager to receive updates from the engine
self.SubscriptionManager.AddConsolidator(self.symbol, OneHourConsolidator)
#self.consolidatedHour = None
def HourBarHandler(self, sender, bar):
'''This is our event handler for our one hour consolidated defined using the Consolidate method'''
#self.consolidateHour = bar
def OnData(self, slice):
if self.IsWarmingUp:
return
## Check for Dividends
if slice.Dividends.ContainsKey(self.symbol):
## If SPY pays a dividend, log it and then skip the rest of OnData (if this is what you want to do,
## otherwise you can write the code for how you want to address a dividend payment
self.Log(str(self.Time) + str(self.symbol) + str(' Paid a dividend: ') + str(slice.Dividends[self.symbol].Distribution))
return
if slice.Bars.ContainsKey(self.symbol) and (slice[self.symbol] is not None):
self.window.Add(slice[self.symbol])
if self.window.IsReady and (self.window[0] is not None):
self.Log(str(self.Time) + str(slice[self.symbol]) + str(" ") + str(self.window[0].Open))
#Get the Bar/Data from RollingWindowself.
currBar = self.window[0] #Current window has an index 0
past_1day = self.window[1] #Previoud day has index 1
past_2day = self.window[2]
past_3day = self.window[3]
price = currBar.Open
self.Log(str(self.Time) + str(price) + str(" ") + str(past_1day.Close))
#Buy Order / Entry
if (not self.Portfolio.Invested) and (price > self.SMA200.Current.Value):
#num_shares = int(self.Portfolio.Cash / price)
num_shares = int(self.CalculateOrderQuantity(self.symbol, 1.0))
self.MarketOrder(self.symbol, num_shares)
#Sell Order/Exit from Market
if self.Portfolio.Invested and (price < self.SMA200.Current.Value):
self.Liquidate()
def OnOrderEvent(self, orderEvent):
self.Log(str(orderEvent))