| Overall Statistics |
|
Total Trades 15394 Average Win 0.01% Average Loss 0.00% Compounding Annual Return 1.272% Drawdown 0.400% Expectancy 18442.870 Net Profit 0.214% Sharpe Ratio 1.029 Probabilistic Sharpe Ratio 50.489% Loss Rate 9% Win Rate 91% Profit-Loss Ratio 20287.26 Alpha 0.01 Beta 0.021 Annual Standard Deviation 0.009 Annual Variance 0 Information Ratio 0.312 Tracking Error 0.182 Treynor Ratio 0.418 Total Fees $15450.57 Estimated Strategy Capacity $140000000000.00 Lowest Capacity Asset AMZN R735QTJ8XC9X |
from datetime import datetime
from datetime import timedelta
class BasicTemplateAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2022,2,20)
self.SetCash(50000000)
self.Data_Symbol = {}
tickers = ["SPY", "AAPL", "MSFT", "AMZN", ]
self.SetWarmUp(30, Resolution.Daily)
for stock in tickers:
symbol = self.AddEquity(stock, Resolution.Minute).Symbol
self.Data_Symbol[symbol] = SymbolData(self, symbol)
## Dictionary for whether symbol was traded; we will reset this every day
self.symbolTraded = { symbol: False for symbol in self.Data_Symbol.keys() }
self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose('SPY', 0), self.ResetSymbolTraded)
self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.Every(timedelta(minutes=1)), self.EveryDayAfterMarketOpen)
def EveryDayAfterMarketOpen(self):
if self.IsWarmingUp: return
for symbol, symbol_data in self.Data_Symbol.items():
if not symbol_data.cci.IsReady: continue
holdings = self.Portfolio[symbol]
invested = holdings.Invested
nowprice = holdings.Price
aveprice = holdings.AveragePrice
quantity = holdings.Quantity
cci = symbol_data.cci.Current.Value
## Check whether the symbol was traded
sold_today = self.symbolTraded[symbol]
#Buy symbol only if if CCI < 100 and that symbol was not sold today
if (not invested) and (not sold_today) and (cci < -100):
self.MarketOrder(symbol, 1)
self.Debug (symbol)
self.Debug (self.Time.date)
what_to_buy = (symbol)
when_to_buy = (self.Time.date)
tobuy = what_to_buy and when_to_buy
if invested and (nowprice > aveprice * 1.01):
self.MarketOrder (symbol, (-1 * quantity))
self.Debug (symbol)
self.Debug (self.Time.date)
#sold_symbol = (symbol)
when_sold = (self.Time.date)
#sold_today = sold_symbol and when_sold
## Note: Assuming if this triggers you want to stop the buy signal?
## Then add a `self.symbolTraded[symbol] = True` here
self.symbolTraded[symbol] = True
def ResetSymbolTraded(self):
## We reset this to False at end of each day
self.symbolTraded = { symbol: False for symbol in self.Data_Symbol.keys() }
class SymbolData:
def __init__ (self,algo,symbol):
self.algorithm = algo
self.symbol = symbol
#CCI Functions
self.cci = algo.CCI(symbol, 14, MovingAverageType.Simple, Resolution.Daily)