| Overall Statistics |
|
Total Orders 3461 Average Win 3.96% Average Loss -2.40% Compounding Annual Return 311.252% Drawdown 80.100% Expectancy 0.090 Start Equity 100000 End Equity 621688.83 Net Profit 521.689% Sharpe Ratio 4.857 Sortino Ratio 6.911 Probabilistic Sharpe Ratio 70.986% Loss Rate 59% Win Rate 41% Profit-Loss Ratio 1.65 Alpha 6.222 Beta 10.075 Annual Standard Deviation 1.538 Annual Variance 2.365 Information Ratio 5.008 Tracking Error 1.467 Treynor Ratio 0.741 Total Fees $804438.72 Estimated Strategy Capacity $45000000.00 Lowest Capacity Asset MNQ YJHOAMPYKQGX Portfolio Turnover 9496.28% |
# region imports
from datetime import timedelta
from AlgorithmImports import *
import numpy as np
import json
# endregion
class PurpleReign(QCAlgorithm):
def initialize(self):
self.set_start_date(2023, 1, 1)
self.set_end_date(2024, 6, 1)
self.set_cash(100000)
self.future_chains = None
# Set the symbol of the asset we want to trade
future = self.add_future(Futures.Indices.MICRO_NASDAQ_100_E_MINI, Resolution.Minute)
future.SetFilter(timedelta(0), timedelta(182))
self.symbol = future.Symbol
# Set up indicators
self._macd = self.MACD(self.symbol, 8, 17, 9, MovingAverageType.Simple)
self._bb = self.BB(self.symbol, 18, 2, MovingAverageType.Simple)
self._kc = self.KCH(self.symbol, 18, 1.5, MovingAverageType.Simple)
# Create a RollingWindow to store the past 3 values of the MACD Histogram
self._macd_hist_window = RollingWindow[IndicatorDataPoint](3)
# Consolidate the data into 5-minute bars
self.Consolidate(self.symbol, timedelta(minutes=5), self.on_data_consolidated)
self.register_indicator(self.symbol, self._macd, timedelta(minutes=5))
self.register_indicator(self.symbol, self._bb, timedelta(minutes=5))
self.register_indicator(self.symbol, self._kc, timedelta(minutes=5))
# Setting stoploss
self.stop_loss_len = 20*5
self.stop_loss_indicator = self.MIN(self.symbol, self.stop_loss_len, Resolution.MINUTE)
self.lowest_low = 0
self.stop_loss = 0
self.start_stop_loss = False
self.closed_window = RollingWindow[TradeBar](2)
# Warming up engine
self.set_warm_up(5*20, Resolution.MINUTE)
self.settings.free_portfolio_value_percentage = 0.2
def on_margin_call_warning(self):
self.Error("Margin call warning")
def on_data_consolidated(self, data: slice):
# Check if the data strategy is warming up
if self.is_warming_up:
return
# Track the last 2 bars
self.closed_window.Add(data)
# Check if the Bollinger Bands are within the Keltner Channels
self.squeeze = self._bb.UpperBand.Current.Value < self._kc.UpperBand.Current.Value and self._bb.LowerBand.Current.Value > self._kc.LowerBand.Current.Value
# self.Log(f"Squeeze indicator: {self.squeeze}")
# Check for MACD entry signal
self._macd_hist_window.Add(self._macd.Histogram.Current)
# Ensure we have 3 data points in the window
if self._macd_hist_window.IsReady:
macd_hist = self._macd_hist_window[0].Value # Current MACD Histogram value
macd_hist_1 = self._macd_hist_window[1].Value # MACD Histogram value 1 bar ago
macd_hist_2 = self._macd_hist_window[2].Value # MACD Histogram value 2 bars ago
self.macd_long_in = (macd_hist > macd_hist_1 or macd_hist > macd_hist_2) and macd_hist > 0
# self.Log(f"MACD entry: {self.macd_long_in}")
# Find the future contract
for chain in self.future_chains:
self.popular_contracts = [contract for contract in chain.value if contract.open_interest > 1000]
if len(self.popular_contracts) == 0:
continue
sorted_bt_o_i_contracts = sorted(self.popular_contracts, key=lambda k: k.open_interest, reverse=True)
self.future_contract = sorted_bt_o_i_contracts[0]
# Entry
if not self.portfolio.invested:
if self.squeeze and self.macd_long_in:
self.log(f"Buy at {data.Close}")
self.set_holdings(self.future_contract.symbol, 1)
self.start_stop_loss = True
self.stop_loss = self.lowest_low
# self.log(f"Stop loss level {self.stop_loss}")
# Send notification
self.send_webhook_notification("Buy")
# Exit
if self.portfolio.invested and self.start_stop_loss:
# Register stop loss and take profit levels
if self.closed_window.IsReady:
if self.closed_window[0].Close > self.closed_window[1].Close:
self.stop_loss += (self.closed_window[0].Close - self.closed_window[1].Close)
# Stop loss
# if data.Close < self.stop_loss or not self.Time.hour in range(9, 16):
if self.closed_window[0].Close < self.stop_loss:
self.log(f"Stop loss at {data.Close}")
self.liquidate(self.future_contract.symbol)
self.start_stop_loss = False
# Send notification
self.send_webhook_notification("Sell")
def on_data(self, data: Slice):
self.future_chains = data.FutureChains
self.lowest_low = self.stop_loss_indicator.Current.Value
def send_webhook_notification(self, position):
"""
Send a webhook notification with the given position (Buy/Sell).
"""
url = 'https://newagewallstreet.io/version-test/api/1.1/wf/catch-trades?api_token=cc7d071598606d101e84f252c9654956'
data = {
"strat": "1716875896866x801605936682184200",
"ticker": "NQM4",
"position": position
}
headers = {'Content-Type': 'application/json'}
try:
self.notify.web(url, json.dumps(data), headers)
self.log(f"Webhook notification sent. Position: {position}")
except Exception as e:
self.log(f"Failed to send webhook notification. Error: {str(e)}")