| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 1.735 Tracking Error 0.241 Treynor Ratio 0 Total Fees $0.00 |
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Data import *
from QuantConnect.Data.Market import *
from QuantConnect.Data.Consolidators import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Securities import *
from QuantConnect.Orders import *
from datetime import datetime
from System.Drawing import Color
import decimal as d
import numpy as np
class Demo(QCAlgorithm):
def Initialize(self):
# configuration parameters (configurable inputs into the algorithm)
DEBUG_LOG = str(self.GetParameter("Debug Log")).lower() == "true" or False
MINUTES_AFTER_OPEN = int(self.GetParameter("MarketOpenDelay")) or 0
MINUTES_BEFORE_CLOSE = int(self.GetParameter("SellMinutesBeforeClose")) or 1
SYMBOL = str(self.GetParameter("Symbol"))
BBLENGTH = int(self.GetParameter("BB Length")) or 20
BBDEV = int(self.GetParameter("BB Deviation")) or 2
MATYPE = str(self.GetParameter("BB MA Type")) or Exponential
self.ORDER_MAP = ["Market", "Limit", "StopMarket", "StopLimit", "MarketOnOpen", "MarketOnClose", "OptionExercise"]
self.DEBUG = DEBUG_LOG
# initialization
self.SetStartDate(2020, 9, 1)
self.SetEndDate(2020, 9, 30)
self.SetCash(100000)
self.stock = self.AddEquity(SYMBOL, Resolution.Second)
self.SetTimeZone("America/Chicago")
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
self.Schedule.On(self.DateRules.EveryDay(self.stock.Symbol), self.TimeRules.AfterMarketOpen(self.stock.Symbol, MINUTES_AFTER_OPEN), self.OnMarketOpen)
self.Schedule.On(self.DateRules.EveryDay(self.stock.Symbol), self.TimeRules.BeforeMarketClose(self.stock.Symbol, MINUTES_BEFORE_CLOSE), self.OnMarketClose)
# set the trade flag to False. we'll only start trading when the flag flips to True (after the market open event)
self.tradeFlag = False
self.bb = self.BB(SYMBOL, BBLENGTH, 2, MovingAverageType.Exponential, Resolution.Minute)
# create the 30-minutes data consolidator
#fiveMinuteConsolidator = TradeBarConsolidator(timedelta(minutes=5))
#self.SubscriptionManager.AddConsolidator(SYMBOL, fiveMinuteConsolidator)
# register the 30-minute consolidated bar data to automatically update the indicator
#self.RegisterIndicator(SYMBOL, self.bb, fiveMinuteConsolidator)
#self.RegisterIndicator(SYMBOL, self.bb, timedelta(minutes=5))
self.lastPrice = 0.0
self.pl = 0.0
self._lo = None
self.SetWarmUp(120, Resolution.Minute)
self.Consolidate(SYMBOL, timedelta(minutes=5), self.OnStockBarConsolidated)
# OnMarketOpen event, callback from our TimeRules.AfterMarketOpen initialization
def OnMarketOpen(self):
# start trading!
self.tradeFlag = True
# OnMarketClose event, callback from our TimeRules.BeforeMarketClose initialization
def OnMarketClose(self):
# liquidate all holdings
if self.stock.Invested:
self.Liquidate(self.stock.Symbol, "EOD Liquidate")
else:
self.Transactions.CancelOpenOrders()
# reset trade flag for following day
self.tradeFlag = False
if self.DEBUG:
self.Debug("Profit/Loss as of " + str(self.Time) + ": " + str(self.pl) + " | Portfolio Value: " + str(self.Portfolio.TotalPortfolioValue))
def CollectData(self):
pass
def OnStockBarConsolidated(self, consolidated):
if self.IsWarmingUp or not self.tradeFlag or not self.bb.IsReady:
return
open_orders = self.Transactions.GetOpenOrders(self.stock.Symbol)
ub = self.bb.UpperBand.Current.Value
lb = self.bb.LowerBand.Current.Value
shares = self.CalculateOrderQuantity(self.stock.Symbol, 0.6)
self.prevCandle = {
"Open": consolidated.Open,
"High": consolidated.High,
"Low": consolidated.Low,
"Close": consolidated.Close
}
# OnData event provided by QC, provides new dataset on each time slice, based on equity resolution
def OnData(self, data):
# if we're not ready to trade, skip this run
if self.IsWarmingUp or not self.tradeFlag:
return
def OnOrderEvent(self, OrderEvent):
if OrderEvent.FillQuantity == 0:
return
self.lastPrice = float(OrderEvent.FillPrice)
order = self.Transactions.GetOrderById(OrderEvent.OrderId)
orderType = order.Type
self.pl -= order.Value
if "liquid" in (str(order.Tag)).lower():
if "short" in (str(order.Tag)).lower():
self.Plot('Stock Plot', 'Liquidate', OrderEvent.FillPrice)
if "long" in (str(order.Tag)).lower():
self.Plot('Stock Plot', 'Liquidate', OrderEvent.FillPrice)
if "buy" in (str(order.Tag)).lower():
self.Plot('Stock Plot', 'Buy Fill', OrderEvent.FillPrice)
if "sell" in (str(order.Tag)).lower():
self.Plot('Stock Plot', 'Sell Fill', OrderEvent.FillPrice)
if "profit" in (str(order.Tag)).lower():
self.Plot('Stock Plot', 'Profit', OrderEvent.FillPrice)
if self.DEBUG:
self.Debug("{} was filled. Tag: {}. Symbol: {}. Quantity: {}. Price: {}, Fee: {}, Trade Value: {}. Running Sum: {}. Portfolio: {}"
.format(str(self.ORDER_MAP[order.Type]),
str(order.Tag),
str(OrderEvent.Symbol),
str(OrderEvent.FillQuantity),
str(OrderEvent.FillPrice),
str(OrderEvent.OrderFee),
str(order.Value),
str(self.pl),
str(self.Portfolio.TotalPortfolioValue)))