| Overall Statistics |
|
Total Trades 33 Average Win 1.49% Average Loss -0.44% Compounding Annual Return 36.569% Drawdown 4.000% Expectancy 0.373 Net Profit 2.584% Sharpe Ratio 2.049 Loss Rate 69% Win Rate 31% Profit-Loss Ratio 3.39 Alpha 0.31 Beta -0.039 Annual Standard Deviation 0.155 Annual Variance 0.024 Information Ratio 2.239 Tracking Error 0.227 Treynor Ratio -8.075 Total Fees $42.71 |
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
using System.Globalization;
using System.Text;
using System.Threading.Tasks;
using QuantConnect.Data;
using QuantConnect.Data.Consolidators;
namespace QuantConnect.Algorithm.CSharp
{
// In this algorithm we show how you can easily define a
// universe using our coarse selection data. This data includes
// a few properties, including the daily DollarVolume, the daily Volume
// and also the daily closing price via the Value property.
public class CoarseFundamentalTop5Algorithm : QCAlgorithm
{
// initialize our security changes to nothing
SecurityChanges _changes = SecurityChanges.None;
TradeBar open;
// we'll set the close at the end of each day
TradeBar close;
public override void Initialize()
{
// this sets the resolution for securities added via universe selection
UniverseSettings.Resolution = Resolution.Minute;
SetStartDate(2015, 1, 1);
SetEndDate(2015, 2, 1);
SetCash(5000);
// this add universe method accepts a single parameter that is a function that
// accepts an IEnumerable<CoarseFundamental> and returns IEnumerable<Symbol>
AddUniverse(CoarseSelectionFunction);
}
// sort the data by daily dollar volume and take the top 5 symbols
public static IEnumerable<Symbol> CoarseSelectionFunction(IEnumerable<CoarseFundamental> coarse)
{
// sort descending by daily dollar volume
var sortedByDollarVolume = coarse.OrderBy(x => x.Price);
// take the top 5 entries from our sorted collection
//var top5 = sortedByDollarVolume.Take(1);
// we need to return only the symbols
//return top5.Select(x => x.Symbol);
return (from stock in coarse
orderby stock.Price descending
where stock.Price < 5
select stock.Symbol).Take(1);
}
//Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol.
public void OnData(TradeBars data)
{
// if we have no changes, do nothing
if (_changes == SecurityChanges.None) return;
// liquidate removed securities
foreach (var security in _changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
}
}
// we want 25% allocation in each security in our universe (total of 150% invested)
foreach (var security in _changes.AddedSecurities)
{
SetHoldings(security.Symbol, 0.25m);
Log("BUY >> " + security.Symbol + " " + security.Price);
}
// reset our changes
_changes = SecurityChanges.None;
}
// this event fires whenever we have changes to our universe
public override void OnSecuritiesChanged(SecurityChanges changes)
{
_changes = changes;
}
}
}