| Overall Statistics |
|
Total Orders 1 Average Win 0% Average Loss 0% Compounding Annual Return 21.117% Drawdown 40.600% Expectancy 0 Start Equity 10000 End Equity 80971.22 Net Profit 709.712% Sharpe Ratio 0.705 Sortino Ratio 0.755 Probabilistic Sharpe Ratio 18.092% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.043 Beta 1.217 Annual Standard Deviation 0.197 Annual Variance 0.039 Information Ratio 0.706 Tracking Error 0.085 Treynor Ratio 0.114 Total Fees $3.10 Estimated Strategy Capacity $85000.00 Lowest Capacity Asset IGM S355OE92LKDH Portfolio Turnover 0.03% Drawdown Recovery 757 |
# region imports
from AlgorithmImports import *
from utils import Utils
# endregion
class WellDressedApricotRat(QCAlgorithm):
def initialize(self):
self.set_start_date(2015, 1, 1)
self.init_cash = 10000
self.set_cash(self.init_cash)
self.symbol = "IGM"
self.add_equity(self.symbol , Resolution.DAILY)
self.set_name(self.symbol)
self._symbol = self.add_equity("VOO", Resolution.DAILY).Symbol
self.utils = Utils(self, self._symbol)
self.schedule.on(self.date_rules.every_day(), self.time_rules.before_market_close(self._symbol, 0), self.utils.plot)
def on_data(self, data: Slice):
if not self.portfolio.invested:
self.set_holdings(self.symbol, 1)
from AlgorithmImports import *
from Newtonsoft.Json import JsonConvert
import System
import psutil
class Utils():
def __init__(self, algo, ticker):
self.algo = algo
self.ticker = ticker
self.mkt = []
self.insights_key = f"{self.algo.project_id}/Live_{self.algo.live_mode}_insights"
self.algo.set_benchmark(ticker)
self._initial_portfolio_value = self.algo.init_cash
self._initial_benchmark_price = 0
self._portfolio_high_watermark = 0
self.init_chart()
def init_chart(self):
chart_name = "Strategy Performance"
chart = Chart(chart_name)
strategy_series = Series("Strategy", SeriesType.LINE, 0, "$")
strategy_series.color = Color.ORANGE
chart.add_series(strategy_series)
benchmark_series = Series("Benchmark", SeriesType.LINE, 0, "$")
benchmark_series.color = Color.LIGHT_GRAY
chart.add_series(benchmark_series)
drawdown_series = Series("Drawdown", SeriesType.LINE, 1, "%")
drawdown_series.color = Color.INDIAN_RED
chart.add_series(drawdown_series)
self.algo.add_chart(chart)
def plot(self):
if self.algo.live_mode or self.algo.is_warming_up:
return
# Capture initial reference values
if self._initial_portfolio_value == 0.0:
self._initial_portfolio_value = float(self.algo.portfolio.total_portfolio_value)
benchmark_price = float(self.algo.securities[self.algo._symbol].price)
if self._initial_benchmark_price == 0.0 and benchmark_price > 0.0:
self._initial_benchmark_price = benchmark_price
# Ensure both initial values are set
if self._initial_portfolio_value == 0.0 or self._initial_benchmark_price == 0.0:
return
# Current values
current_portfolio_value = float(self.algo.portfolio.total_portfolio_value)
# Defensive check (avoid division by zero)
if self._initial_portfolio_value == 0.0 or self._initial_benchmark_price == 0.0:
return
# Normalize (start at 1.0)
normalized_portfolio = current_portfolio_value / self._initial_portfolio_value
normalized_benchmark = benchmark_price / self._initial_benchmark_price
current_value = self.algo.portfolio.total_portfolio_value
if current_value > self._portfolio_high_watermark:
self._portfolio_high_watermark = current_value
drawdown = 0.0
if self._portfolio_high_watermark != 0.0:
drawdown = (current_value - self._portfolio_high_watermark) / self._portfolio_high_watermark * 100.0
chart_name = "Strategy Performance"
self.algo.plot(chart_name, "Drawdown", drawdown)
self.algo.plot(chart_name, "Strategy", normalized_portfolio*self.algo.init_cash)
self.algo.plot(chart_name, "Benchmark", normalized_benchmark*self.algo.init_cash)
self.algo.plot('Strategy Equity', self.ticker, normalized_benchmark*self.algo.init_cash)
def pctc(no1, no2):
return((float(str(no2))-float(str(no1)))/float(str(no1)))
def stats(self):
df = None
trades = self.algo.trade_builder.closed_trades
for trade in trades:
data = {
'symbol': trade.symbol,
'time': trade.entry_time,
'entry_price': trade.entry_price,
'exit_price': trade.exit_price,
'pnl': trade.profit_loss,
'pnl_pct': (trade.exit_price - trade.entry_price)/trade.entry_price,
}
df = pd.concat([pd.DataFrame(data=data, index=[0]), df])
if df is not None:
profit = df.query('pnl >= 0')['pnl'].sum()
loss = df.query('pnl < 0')['pnl'].sum()
avgWinPercentPerWin = "{0:.2%}".format(df.query('pnl >= 0')['pnl_pct'].mean())
avgLostPercentPerLost = "{0:.2%}".format(df.query('pnl < 0')['pnl_pct'].mean())
maxLost = "{0:.2%}".format(df.query('pnl < 0')['pnl_pct'].min())
maxWin = "{0:.2%}".format(df.query('pnl > 0')['pnl_pct'].max())
self.algo.set_summary_statistic("*Profit Ratio", round(profit / abs(loss),2))
self.algo.set_summary_statistic("Avg. Win% Per Winner", avgWinPercentPerWin)
self.algo.set_summary_statistic("Avg. Lost% Per Losser", avgLostPercentPerLost)
self.algo.set_summary_statistic("Max Loss%", maxLost)
self.algo.set_summary_statistic("Max Win%", maxWin)
def read_insight(self):
if self.algo.object_store.contains_key(self.insights_key) and self.algo.live_mode:
insights = self.algo.object_store.read_json[System.Collections.Generic.List[Insight]](self.insights_key)
self.algo.log.debug(f"Read {len(insights)} insight(s) from the Object Store")
self.algo.insights.add_range(insights)
#self.algo.object_store.delete(self.insights_key)
def store_insight(self):
if self.algo.live_mode:
insights = self.algo.insights.get_insights(lambda x: x.is_active(self.algo.utc_time))
# If we want to save all insights (expired and active), we can use
# insights = self.insights.get_insights(lambda x: True)
self.algo.log.debug(f"Save {len(insights)} insight(s) to the Object Store.")
content = ','.join([JsonConvert.SerializeObject(x) for x in insights])
self.algo.object_store.save(self.insights_key, f'[{content}]')
def get_near_expiry_insights(self, sourceModel, symbol):
insights = self.algo.insights.get_insights(lambda insight: (insight.close_time_utc) == (self.algo.utc_time + timedelta(hours=1)) and insight.Symbol == symbol and insight.SourceModel == sourceModel and insight.is_active(self.algo.utc_time))
return len(insights) > 0
def trace_memory(self, name):
self.algo.log.debug(f"[{name}] RAM memory % used: {psutil.virtual_memory()[2]} / RAM Used (GB): {round(psutil.virtual_memory()[3]/1000000000,2)}")