| Overall Statistics |
|
Total Trades 170 Average Win 1.42% Average Loss -0.23% Compounding Annual Return 25.110% Drawdown 24.600% Expectancy 5.822 Net Profit 206.900% Sharpe Ratio 1.612 Probabilistic Sharpe Ratio 86.513% Loss Rate 5% Win Rate 95% Profit-Loss Ratio 6.19 Alpha 0.228 Beta -0.11 Annual Standard Deviation 0.132 Annual Variance 0.017 Information Ratio 0.32 Tracking Error 0.231 Treynor Ratio -1.931 Total Fees $341.18 Estimated Strategy Capacity $140000000.00 Lowest Capacity Asset LQD SGNKIKYGE9NP |
from math import ceil,floor,isnan
from datetime import datetime
import pandas as pd
import numpy as np
from scipy.optimize import minimize
#from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity
# Based on the following discussion - https://www.quantconnect.com/forum/discussion/3216/classical-asset-allocation-with-mean-variance-optimization/p1
# add data normalization
# no SL first to see how it respond
# Method
# Each month we estimate the optimal mix of assets weights based on information from the prior 252 trading days and use that mix for the next month. For the covariance matrix, we used the historical covariance matrix of returns for the trailing twelve months.
# As the mean-variance optimization seeks any optimal set of portfolio weights, There is the potential for the portfolio to become quite concentrated at times. To reduce this possibility, we imposed caps (max weights) on assets to enforce greater diversification as indicated in the paper. E.g. impose a cap of 25% for all risky assets and no cap (i.e. a cap of 100%) for all cash-like assets.
# Optimization
# For optimization, we tried the different methods like maximizing the Sharpe Ratio, maximizing the return given target volatility stays unchanged (We use 15% as the target volatility).
class AssetAllocationAlgorithm(QCAlgorithm):
def Initialize(self):
# frame 1
self.SetStartDate(2016, 1, 1)
self.SetEndDate(2020, 12, 31)
# #frame 2
# self.SetStartDate(2011, 1, 1)
# self.SetEndDate(2015, 12, 31)
# # #frame 3
# self.SetStartDate(2006, 1, 1)
# self.SetEndDate(2010, 12, 31)
# #frame 4
# self.SetStartDate(2001, 1, 1)
# self.SetEndDate(2005, 12, 31)
#11 year test
# self.SetStartDate(2010, 1, 1)
# self.SetEndDate(2020, 12, 31)
self.SetCash(100000) # Set Strategy Cash
self.SetSecurityInitializer(lambda x: x.SetDataNormalizationMode(DataNormalizationMode.TotalReturn))
#note without data normalization - it will be factoring splits and dividends
# DataNormalizationMode.Adjusted //Factoring in splits and dividends, default setting if no normalization
# .SplitAdjusted // Just factoring splits, paying dividends as cash
# .TotalReturn //Adding dividends to asset price
# .Raw // Price as raw, dividends paid as cash, quantity adjusted on splits
# tickers = ["SPY", "TLT", "BND", "VGT"] #yl
# tickers = ["SPY","QQQ","DIA","IWM","TLT","GLD"] #JW 156
# tickers = ["SPY", "IVV"] #103.75
# tickers = ["SPY", "VTI"] #139.96
# tickers = ["SPY", "VOO"] #125.95
# tickers = ["SPY", "QQQ"] #131.27
# tickers = ["SPY", "MLPY"] #-1.4
# tickers = ["SPY", "VEA"] #50.79
# tickers = ["SPY", "IEFA"] #47.95
#tickers = ["SPY", "AGG"] #111.01
#tickers = ["SPY", "VWO"] #105.34
# tickers = ["SPY", "IEMG"] #86.49
# tickers = ["SPY", "VTV"] #61.29
# tickers = ["SPY", "VUG"] #100.23
# tickers = ["SPY", "BND"] #108.17
# tickers = ["SPY", "IJR"] #105.19
# tickers = ["SPY", "IWM"] #105.26
# tickers = ["SPY", "IWF"] #105.09
# tickers = ["SPY", "IJH"] #85.16
# tickers = ["SPY", "GLD"] #124.93
#tickers = ["SPY", "VIG"] #119.13
# tickers = ["SPY", "VCIT"] #99.57
# tickers = ["SPY", "LQD"] #130.17
# tickers = ["SPY", "BNDX"] #92.88
# tickers = ["SPY", "ITOT"] #104.45
# tickers = ["SPY", "VCSH"] #92.71
# tickers = ["SPY", "VYM"] #52.98
# tickers = ["SPY", "BSV"] #110.92
# tickers = ["SPY", "USMV"] #132.84
# tickers = ["SPY", "IAU"] #119.86
# tickers = ["SPY", "IXUS"] #55.54
# tickers = ["SPY", "TIP"] #124.19
# tickers = ["SPY", "MBB"] #82.1
# tickers = ["SPY", "IGSB"] #93.12
# tickers = ["SPY", "HYG"] #80.12
# tickers = ["SPY", "SDY"] #82.85
# tickers = ["SPY", "SHY"] #92.29
# tickers = ["SPY", "SCHP"] #103.11
# tickers = ["SPY", "SLV"] #90.70
# tickers = ["SPY", "SHV"] #64.06
# tickers = ["SPY", "IEF"] #113.28
# tickers = ["SPY", "TLT"] #131.87
# tickers = ["IEF", "TLT", "SPY", "EFA", "EEM", "JPXN", "VGT"] #original 75.65%
#by return 130 above
# tickers = ["SPY", "VTI", "QQQ", "USMV", "LQD", "TLT", "GLD", "IAU"] #scenario1 136.57
# tickers = ["SPY", "VTI", "USMV", "TLT", "QQQ", "LQD"] scenario3 112.67?
# tickers = ["SPY", "QQQ", "TLT", "LQD", "GLD"] scenario4 145.33?
# tickers = ["SPY", "QQQ", "LQD", "GLD", "IAU"] scenario5 129.11?
# tickers = ["SPY", "VTI", "TLT", "GLD"] #scenario 6 134.61
# tickers = ["SPY", "USMV", "TLT", "GLD"] scenario 7 92.98?
# tickers = ["SPY", "QQQ", "TLT", "IAU"] scenario 10 137?
tickers = ["SPY", "VTI", "QQQ", "LQD", "TLT", "GLD", "IAU"] #scenario2 206.90 v7% 122.53 v10% 154.36, v15% 188.23
# tickers = ["SPY", "QQQ", "TLT", "GLD"] #scenario 8 179.02 v7% 139.84 v10% 165.46, v15% 176.20
# tickers = ["SPY", "QQQ", "LQD", "GLD"] #scenario 9 177.81 v7% 160.86 v10% 159.09 v15% 144.35
self.symbols = []
for i in tickers:
self.symbols.append(self.AddEquity(i, Resolution.Daily).Symbol)
for syl in self.symbols:
syl.window = RollingWindow[TradeBar](252)
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.Rebalancing))
## Risk model - additional parameter
# stopRisk = self.GetParameter("stopRisk")
# if stopRisk is None:
# stopRisk = 0.16
# self.SetRiskManagement(TrailingStopRiskManagementModel(float(stopRisk)))
def OnData(self, data):
if data.ContainsKey("SPY"):
for syl in self.symbols:
syl.window.Add(data[syl])
def Rebalancing(self):
data = {}
for syl in self.symbols:
data[syl] = [float(i.Close) for i in syl.window]
df_price = pd.DataFrame(data,columns=data.keys())
daily_return = (df_price / df_price.shift(1)).dropna()
a = PortfolioOptimization(daily_return, 0, len(data))
opt_weight = a.opt_portfolio()
if isnan(sum(opt_weight)): return
self.Log(str(opt_weight))
for i in range(len(data)):
self.SetHoldings(df_price.columns[i], opt_weight[i])
# equally weighted
# self.SetHoldings(self.symbols[i], 1.0/len(data))
class PortfolioOptimization(object):
import numpy as np
import pandas as pd
def __init__(self, df_return, risk_free_rate, num_assets):
self.daily_return = df_return
self.risk_free_rate = risk_free_rate
self.n = num_assets # numbers of risk assets in portfolio
self.target_vol = 0.05 #orig is 0.05 and then we test 0.07, 0.10, 0.15
def annual_port_return(self, weights):
# calculate the annual return of portfolio
return np.sum(self.daily_return.mean() * weights) * 252
def annual_port_vol(self, weights):
# calculate the annual volatility of portfolio
return np.sqrt(np.dot(weights.T, np.dot(self.daily_return.cov() * 252, weights)))
def min_func(self, weights):
# method 1: maximize sharp ratio
# return - self.annual_port_return(weights) / self.annual_port_vol(weights)
# # method 2: maximize the return with target volatility
return - self.annual_port_return(weights) / self.target_vol
def opt_portfolio(self):
# maximize the sharpe ratio to find the optimal weights
cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bnds = tuple((0, 1) for x in range(2)) + tuple((0, 0.25) for x in range(self.n - 2))
opt = minimize(self.min_func, # object function
np.array(self.n * [1. / self.n]), # initial value
method='SLSQP', # optimization method
bounds=bnds, # bounds for variables
constraints=cons) # constraint conditions
opt_weights = opt['x']
return opt_weights