| Overall Statistics |
|
Total Trades 570 Average Win 0.57% Average Loss -0.57% Compounding Annual Return -24.781% Drawdown 38.800% Expectancy -0.162 Net Profit -24.781% Sharpe Ratio -0.704 Probabilistic Sharpe Ratio 1.580% Loss Rate 58% Win Rate 42% Profit-Loss Ratio 1.01 Alpha -0.25 Beta 0.465 Annual Standard Deviation 0.224 Annual Variance 0.05 Information Ratio -1.575 Tracking Error 0.226 Treynor Ratio -0.34 Total Fees $1608.76 Estimated Strategy Capacity $1000.00 Lowest Capacity Asset MJIN XSFV65Y0WJ1H |
# region imports
from AlgorithmImports import *
# endregion
# region imports
from AlgorithmImports import *
# endregion
# Import packages
import numpy as np
import pandas as pd
import scipy as sc
class CalculatingRedTapir(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 1, 1) # Set Start Date
self.SetEndDate(2022, 1, 1)
self.SetCash(100000) # Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
res = Resolution.Minute
#self.SetBenchmark("SPY")
# stock selection
#self.STKSEL = self.AddEquity('SOXX', res).Symbol
self.rebalanceTime = datetime.min
self.activeStocks = set()
self.AddUniverse(self.CoarseFilter, self.FineFilter)
self.UniverseSettings.Resolution = Resolution.Hour
self.portfolioTargets = []
# Feed-in constants
self.INI_WAIT_DAYS = 9 # out for 3 trading weeks
#outmarket choices
self.TLT = self.AddEquity('MJIN', res).Symbol
self.IEF = self.AddEquity('TBF', res).Symbol
# Market and list of signals based on ETFs
res = Resolution.Minute
self.MRKT = self.AddEquity('SPY', res).Symbol
self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials)
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res)
self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # VS silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven (CHF)
self.RICU = self.AddEquity('FXA', res).Symbol # risk currency (AUD)
self.INDU = self.PRDC # vs industrials
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU]
self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX]
# 'In' and 'out' holdings incl. weights
#self.HLD_IN = self.portfolioTargets
self.HLD_OUT = {self.TLT: .5, self.IEF: .5}
# Initialize variables
## 'In'/'out' indicator
self.be_in = 1
## Day count variables
self.dcount = 0 # count of total days since start
self.outday = 0 # dcount when self.be_in=0
## Flexi wait days
self.WDadjvar = self.INI_WAIT_DAYS
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 120),
self.rebalance_when_out_of_the_market
)
self.Schedule.On(
self.DateRules.WeekEnd(),
self.TimeRules.AfterMarketOpen('SPY', 120),
self.rebalance_when_in_the_market
)
# functions for universe
def CoarseFilter(self, coarse):
# Rebalancing monthly
if self.Time <= self.rebalanceTime:
return self.Universe.Unchanged
self.rebalanceTime = self.Time + timedelta(30)
sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)
return [x.Symbol for x in sortedByDollarVolume if x.Price > 10 and x.HasFundamentalData][:200]
def FineFilter(self, fine):
sortedByPE = sorted(fine, key=lambda x: x.MarketCap)
return [x.Symbol for x in sortedByPE if x.MarketCap > 0][:5]
def OnSecuritiesChanged(self, changes):
# close positions in removed securities
for x in changes.RemovedSecurities:
self.Debug(f"{self.Time}: Removed {x.Symbol}")
self.Liquidate(x.Symbol)
self.activeStocks.remove(x.Symbol)
# can't open positions here since data might not be added correctly yet
for x in changes.AddedSecurities:
self.Debug(f"{self.Time}: Added {x.Symbol}")
self.activeStocks.add(x.Symbol)
# adjust targets if universe has changed
self.portfolioTargets = [PortfolioTarget(symbol, 1/len(self.activeStocks))
for symbol in self.activeStocks]
def OnData(self, data):
if self.portfolioTargets == []:
return
for symbol in self.activeStocks:
if symbol not in data:
return
def rebalance_when_out_of_the_market(self):
# Returns sample to detect extreme observations
hist = self.History(
self.SIGNALS + [self.MRKT] + self.FORPAIRS, 252, Resolution.Daily)['close'].unstack(level=0).dropna()
#hist_shift = hist.rolling(66).apply(lambda x: x[:11].mean())
hist_shift = hist.apply(lambda x: (x.shift(65) + x.shift(64) + x.shift(63) + x.shift(62) + x.shift(
61) + x.shift(60) + x.shift(59) + x.shift(58) + x.shift(57) + x.shift(56) + x.shift(55)) / 11)
returns_sample = (hist / hist_shift - 1)
# Reverse code USDX: sort largest changes to bottom
returns_sample[self.USDX] = returns_sample[self.USDX] * (-1)
# For pairs, take returns differential, reverse coded
returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA])
returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU])
returns_sample['C_A'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU])
self.pairlist = ['G_S', 'U_I', 'C_A']
# Extreme observations; statist. significance = 1%
pctl_b = np.nanpercentile(returns_sample, 1, axis=0)
extreme_b = returns_sample.iloc[-1] < pctl_b
# Determine waitdays empirically via safe haven excess returns, 50% decay
self.WDadjvar = int(
max(0.50 * self.WDadjvar,
self.INI_WAIT_DAYS * max(1,
#returns_sample[self.GOLD].iloc[-1] / returns_sample[self.SLVA].iloc[-1],
#returns_sample[self.UTIL].iloc[-1] / returns_sample[self.INDU].iloc[-1],
#returns_sample[self.SHCU].iloc[-1] / returns_sample[self.RICU].iloc[-1]
np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1)
))
)
adjwaitdays = min(60, self.WDadjvar)
#self.Debug('{}'.format(self.WDadjvar))
# Determine whether 'in' or 'out' of the market
if (extreme_b[self.SIGNALS + self.pairlist]).any():
self.be_in = False
self.outday = self.dcount
if self.dcount >= self.outday + adjwaitdays:
self.be_in = True
self.dcount += 1
#self.be_in = True # for testing, sets to always in
#self.TLT = self.AddEquity('MJIN', res).Symbol
#self.IEF = self.AddEquity('TBF', res).Symbol
#self.HLD_OUT = {self.TLT: .5, self.IEF: .5}
# Swap to 'out' assets if applicable
if not self.be_in:
for x in self.portfolioTargets:
self.SetHoldings(x.Symbol, 0)
for asset, weight in self.HLD_OUT.items():
self.SetHoldings(asset, weight)
self.Plot("In Out", "in_market", int(self.be_in))
self.Plot("In Out", "num_out_signals", extreme_b[self.SIGNALS + self.pairlist].sum())
self.Plot("Wait Days", "waitdays", adjwaitdays)
def rebalance_when_in_the_market(self):
#res = Resolution.Minute
#self.TLT = self.AddEquity('MJIN', res).Symbol
#self.IEF = self.AddEquity('TBF', res).Symbol
#self.HLD_OUT = {self.TLT: .5, self.IEF: .5}
# Swap to 'in' assets if applicable
if self.be_in:
# Close 'Out' holdings
for asset, weight in self.HLD_OUT.items():
self.SetHoldings(asset, 0)
self.SetHoldings(self.portfolioTargets)
#self.Debug(self.portfolioTargets)
self.portfolioTargets = []