| Overall Statistics |
|
Total Orders 83 Average Win 12.24% Average Loss -5.46% Compounding Annual Return 19.554% Drawdown 32.700% Expectancy 0.818 Start Equity 10000 End Equity 29066.76 Net Profit 190.668% Sharpe Ratio 0.567 Sortino Ratio 0.454 Probabilistic Sharpe Ratio 11.181% Loss Rate 44% Win Rate 56% Profit-Loss Ratio 2.24 Alpha 0.115 Beta 0.19 Annual Standard Deviation 0.238 Annual Variance 0.057 Information Ratio 0.11 Tracking Error 0.271 Treynor Ratio 0.713 Total Fees $724.40 Estimated Strategy Capacity $270000000.00 Lowest Capacity Asset MARA VSI9G9W3OAXX Portfolio Turnover 1.17% |
from AlgorithmImports import *
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
# ------------------------------
# 1) Custom Models: 0.1% Fee & 0 Slippage
# ------------------------------
class CustomFeeModel(FeeModel):
"""
Applies a 0.1% transaction fee on each trade (open/close).
"""
def GetOrderFee(self, security, order):
orderValue = security.Price * abs(order.Quantity)
fee = 0.001 * orderValue # 0.1% of trade notional
return fee
class CustomSlippageModel:
"""
Sets slippage to 0.
"""
def GetSlippageApproximation(self, security, order):
return 0
class MLTradingAlgorithm(QCAlgorithm):
def Initialize(self):
# 1. Algorithm Parameters
self.SetStartDate(2019, 1, 1) # Start date
self.SetEndDate(2024, 12, 31) # End date
self.SetCash(10000) # Increased capital for demonstration
# 2. Add MSTR Equity with custom fee & slippage
self.symbol = self.AddEquity("MARA", Resolution.Daily).Symbol
self.Securities[self.symbol].SetFeeModel(CustomFeeModel())
self.Securities[self.symbol].SetSlippageModel(CustomSlippageModel())
# 3. RollingWindow to Store 200 Days of TradeBar Data
self.data = RollingWindow[TradeBar](200)
# 4. Warm-Up Period
self.SetWarmUp(200)
# 5. Initialize SVM Model
# probability=True so we can get class probabilities
self.model = SVC(probability=True, random_state=42)
self.training_count = 0
self.is_model_trained = False # Tracks if the model is trained
# 6. Partial Allocation (e.g., 20% of total capital)
self.allocation_fraction = 0.3
# 7. Add SPY for Benchmark
self.spySymbol = self.AddEquity("SPY", Resolution.Daily).Symbol
self.Securities[self.spySymbol].SetFeeModel(CustomFeeModel())
self.Securities[self.spySymbol].SetSlippageModel(CustomSlippageModel())
self.SetBenchmark(self.spySymbol)
# For measuring SPY buy-and-hold returns:
self.spyPriceStart = None # will set once we see first price
# 8. Track initial capital to measure strategy returns
self.initialCapital = None
# 9. Schedule Model Training: Every Monday at 10:00 AM
self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday),
self.TimeRules.At(10, 0),
self.TrainModel)
def OnData(self, data):
# Set initial capital & SPY start price (only once)
if self.initialCapital is None:
self.initialCapital = self.Portfolio.TotalPortfolioValue
if self.spyPriceStart is None and data.ContainsKey(self.spySymbol):
bar = data[self.spySymbol]
if bar and bar.Close > 0:
self.spyPriceStart = bar.Close
# Ensure MSTR data is available
if not data.ContainsKey(self.symbol):
return
trade_bar = data[self.symbol]
if trade_bar is None:
return
# Add TradeBar to Rolling Window
self.data.Add(trade_bar)
# Check if RollingWindow is Ready
if not self.data.IsReady or self.data.Count < 200:
return
# Ensure Model is Fitted Before Using It
if not self.is_model_trained:
self.Debug("Model is not trained yet. Skipping prediction.")
return
# Extract Features for Prediction
df = self.GetFeatureDataFrame()
if df is None or len(df) < 1:
return
latest_features = df.iloc[-1, :-1].values.reshape(1, -1)
# Make Predictions using Probability Threshold
try:
# predict_proba returns [prob_class0, prob_class1]
prob_class = self.model.predict_proba(latest_features)[0][1]
prediction = 1 if prob_class > 0.5 else 0
except Exception as e:
self.Debug(f"Error: Model prediction failed. {e}")
return
# Trading Logic
holdings = self.Portfolio[self.symbol].Quantity
# Buy if prediction == 1 and not currently invested
if prediction == 1 and holdings <= 0:
# Check if we have enough buying power before placing orders
if self.Portfolio.GetBuyingPower(self.symbol, OrderDirection.Buy) > 0:
self.SetHoldings(self.symbol, self.allocation_fraction)
else:
self.Debug("Insufficient buying power to execute buy order")
# Sell if prediction == 0 and currently invested
elif prediction == 0 and holdings > 0:
self.Liquidate(self.symbol)
def TrainModel(self):
# Prepare Training Data
df = self.GetFeatureDataFrame()
if df is None or len(df) < 50: # Require enough data to train
self.Debug("Insufficient data for training.")
return
# Split Data (chronological, no shuffle)
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target (0 or 1)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, shuffle=False, random_state=42
)
# Train SVM Model
self.model.fit(X_train, y_train)
self.is_model_trained = True
# Evaluate Model Performance
y_train_prob = self.model.predict_proba(X_train)[:, 1]
y_train_pred_binary = [1 if val > 0.5 else 0 for val in y_train_prob]
train_accuracy = accuracy_score(y_train, y_train_pred_binary)
y_test_prob = self.model.predict_proba(X_test)[:, 1]
y_test_pred_binary = [1 if val > 0.5 else 0 for val in y_test_prob]
test_accuracy = accuracy_score(y_test, y_test_pred_binary)
self.training_count += 1
self.Debug(f"Training #{self.training_count}: "
f"Train Accuracy: {train_accuracy:.2%}, "
f"Test Accuracy: {test_accuracy:.2%}")
def GetFeatureDataFrame(self):
# Wait until we have 200 data points in the rolling window
if self.data.Count < 200:
return None
# Convert rolling window data (TradeBars) to a DataFrame
# RollingWindow has newest items at index 0, so we need to reverse
close_prices = [self.data[i].Close for i in range(self.data.Count - 1, -1, -1)]
df = pd.DataFrame(close_prices, columns=["Close"])
# Feature Engineering
df["SMA_10"] = df["Close"].rolling(window=10).mean()
df["SMA_50"] = df["Close"].rolling(window=50).mean()
# RSI Calculation with safe division
delta = df["Close"].diff()
gain = (delta.where(delta > 0, 0)).rolling(14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(14).mean()
# Avoid division by zero
rs = gain / loss.replace(0, 1e-10)
df["RSI"] = 100 - (100 / (1 + rs))
# MACD Calculation
df["MACD"] = df["Close"].ewm(span=12, adjust=False).mean() - df["Close"].ewm(span=26, adjust=False).mean()
df["MACD_Signal"] = df["MACD"].ewm(span=9, adjust=False).mean()
# Historical Volatility (HV_30)
df["HV_30"] = df["Close"].pct_change().rolling(window=30).std() * np.sqrt(252)
# Define Target: 1 if next day's Close > today's Close, else 0
df["Target"] = (df["Close"].shift(-1) > df["Close"]).astype(int)
# Remove rows with NaN values from rolling calculations
df.dropna(inplace=True)
return df
def OnOrderEvent(self, orderEvent):
"""
Triggered every time an order is filled.
Prints a performance conclusion vs. SPY buy-and-hold.
"""
if orderEvent.Status == OrderStatus.Filled:
# Safety checks for SPY reference
if self.spyPriceStart is None or self.spyPriceStart == 0:
return # Not enough data yet to compare
# Strategy % Return
strategyReturn = (self.Portfolio.TotalPortfolioValue / self.initialCapital - 1) * 100.0
# SPY Buy-and-Hold % Return (comparing current price vs. starting price)
spyPriceNow = self.Securities[self.spySymbol].Price
spyReturn = (spyPriceNow / self.spyPriceStart - 1) * 100.0
if strategyReturn > spyReturn:
conclusion = "Strategy is beating SPY"
elif strategyReturn < spyReturn:
conclusion = "SPY is beating the Strategy"
else:
conclusion = "Strategy and SPY are at the same return"
self.Debug(f"[Order Filled] Strategy Return: {strategyReturn:.2f}%, "
f"SPY B/H Return: {spyReturn:.2f}%. {conclusion}")