| Overall Statistics |
|
Total Trades 827 Average Win 0.62% Average Loss -0.41% Compounding Annual Return 7.258% Drawdown 13.100% Expectancy 0.606 Net Profit 173.418% Sharpe Ratio 0.674 Probabilistic Sharpe Ratio 6.185% Loss Rate 37% Win Rate 63% Profit-Loss Ratio 1.53 Alpha 0.035 Beta 0.224 Annual Standard Deviation 0.078 Annual Variance 0.006 Information Ratio -0.188 Tracking Error 0.147 Treynor Ratio 0.235 Total Fees $891.94 Estimated Strategy Capacity $190000.00 Lowest Capacity Asset BIL TT1EBZ21QWKL |
#region imports
from AlgorithmImports import *
#endregion
# from clr import AddReference
# AddReference("System.Core")
# AddReference("QuantConnect.Common")
# AddReference("QuantConnect.Algorithm")
# from System import *
# from QuantConnect import *
# from QuantConnect.Algorithm import QCAlgorithm
# from QuantConnect.Data.UniverseSelection import *
import decimal as d
from datetime import datetime, timedelta
from decimal import Decimal
import numpy as np
import pandas as pd
class ProtectiveAssetAllocationAlgo(QCAlgorithm):
def Initialize(self):
self.SetCash(25000)
self.SetStartDate(2008,1,1)
##Parameters for algorithm
#self.lookback = 4 ##Lookback in months
self.lookback = 6 ##Lookback in months
self.protection = 1 ##Protection factor = 0(low), 1, 2 (high)
#self.topM = 6 ##topM is the max number of equities
self.topM = 4 ##topM is the max number of equities
self.n_levels = 2 ##number of discrete levels for bond_fraction (>=2)
#self.SafetySymbols = ["IEF"] ##risk free asset to move into for protection
self.SafetySymbols = ["TIP", "IEF", "BIL", "TLT", "SPDN"] ##risk free asset to move into for protection
self.N_safe = int(len(self.SafetySymbols))
# these are the growth symbols we"ll rotate through
self.GrowthSymbols =["SPY", "QQQ", "RSP", "TLT",
"VGK", "EWJ", "EEM",
"DBC"]
self.N_eq = len(self.GrowthSymbols)
# these are the safety symbols we go to when things are looking bad for growth
#self.AddSecurity(SecurityType.Equity, "IEF", Resolution.Minute)
#self.AddSecurity(SecurityType.Equity, "BIL", Resolution.Minute)
#self.AddSecurity(SecurityType.Equity, "SPDN", Resolution.Minute)
self.syl_objs = []
self.syl_objs_safe = []
# we'll hold some computed data in these guys
for symbol in list(self.GrowthSymbols):
self.syl_objs.append(self.AddSecurity(SecurityType.Equity, symbol, Resolution.Minute).Symbol)
for symbol in list(self.SafetySymbols):
self.syl_objs_safe.append(self.AddSecurity(SecurityType.Equity, symbol, Resolution.Minute).Symbol)
for syl_obj in self.syl_objs:
syl_obj.lookbackMovingAverage = self.SMA(syl_obj, 21*self.lookback, Resolution.Daily)
syl_obj.mom21 = self.MOMP(syl_obj, 21, Resolution.Daily)
syl_obj.mom64 = self.MOMP(syl_obj, 64, Resolution.Daily)
syl_obj.mom128 = self.MOMP(syl_obj, 128, Resolution.Daily)
#for syl_obj_safe in self.syl_objs_safe:
for i, item in enumerate(self.syl_objs_safe):
self.syl_objs_safe[i].Ticker = item.Value
self.syl_objs_safe[i].lookbackMovingAverage = self.SMA(item, 21*self.lookback, Resolution.Daily)
self.syl_objs_safe[i].mom21 = self.MOMP(item, 21, Resolution.Daily)
self.syl_objs_safe[i].mom64 = self.MOMP(item, 64, Resolution.Daily)
self.syl_objs_safe[i].mom128 = self.MOMP(item, 128, Resolution.Daily)
#self.SetWarmup(21*self.lookback+1)
self.SetWarmup(130+1)
self.Schedule.On(self.DateRules.MonthStart("SPY"),
self.TimeRules.At(9,45),
Action(self.Rebalance))
def OnData(self, data):
pass
def Rebalance(self):
# poll the Growth Symbols set to determine the number of assets with positive momentum
n = 0
for syl_obj in self.syl_objs:
price = self.Securities[syl_obj].Price
sma = syl_obj.lookbackMovingAverage.Current.Value
if price > sma: n += 1
#if combmom > 0: n += 1
# Calculate the bond fraction based on N_eq, prot, and n
# This is the portion to be invested in safe harbor
# Calculate equity fraction and weight per equity (frac_eq, w_eq)
# Limit bond_fraction to a discrete number of levels (n_levels >=2)
n1 = int(int(self.protection) * int(self.N_eq) / 4.0)
bond_fraction = float(min(1.0, float(float(self.N_eq) - float(n)) / float(float(self.N_eq) - float(n1))))
#n_steps = float(self.n_levels) - 1.0
#bond_fraction = float(bond_fraction*n_steps)/n_steps
w_safe = float(bond_fraction)
self.Log("Safe Weight "+str(w_safe))
#
# calculate the MOM for each equity
# determine the number of equities to be purchases
#
N = 0
for syl_obj in self.syl_objs:
price = self.Securities[syl_obj].Price
sma = syl_obj.lookbackMovingAverage.Current.Value
combmom = (syl_obj.mom64.Current.Value)
syl_obj.MOM = combmom
#syl_obj.MOM = (price / sma) - 1
#if syl_obj.MOM > 0.0: N+=1
if combmom > 0.0: N+=1
for i, item in enumerate(self.syl_objs_safe):
combmom = (item.mom64.Current.Value)
self.syl_objs_safe[i].MOM = combmom
frac_eq = float(1.0 - w_safe)
n_eq = min(N, self.topM)
w_eq = 0.0
if N > 0: w_eq = float(float(frac_eq) / float(n_eq))
mom_threshold = sorted([i.MOM for i in self.syl_objs], reverse=True)[n_eq - 1]
if frac_eq > 0.0:
for syl_obj in self.syl_objs:
if syl_obj.MOM >= float(mom_threshold):
self.SetHoldings(syl_obj, w_eq)
else:
if self.Portfolio[syl_obj].HoldStock:
self.Liquidate(syl_obj)
sortedSafe = sorted([(item.Ticker, item.MOM) for item in self.syl_objs_safe], reverse=True)[-1]
#self.SetHoldings(self.SafetySymbols[0], w_safe)
self.SetHoldings(sortedSafe[0], w_safe)
else:
for syl_obj in self.syl_objs:
if self.Portfolio[syl_obj].HoldStock:
self.Liquidate(syl_obj)
df_safe = pd.DataFrame(self.syl_objs_safe)
sortedSafe = sorted([(item.Ticker, item.MOM) for item in self.syl_objs_safe], reverse=True)[-1]
self.SetHoldings(sortedSafe[0], 1)
#self.SetHoldings(self.SafetySymbols[-1], .5)