| Overall Statistics |
|
Total Orders 979 Average Win 1.29% Average Loss -0.26% Compounding Annual Return 243.892% Drawdown 23.700% Expectancy 5.000 Start Equity 100000 End Equity 14017426.3 Net Profit 13917.426% Sharpe Ratio 3.629 Sortino Ratio 3.742 Probabilistic Sharpe Ratio 99.982% Loss Rate 1% Win Rate 99% Profit-Loss Ratio 5.05 Alpha 1.515 Beta 0.033 Annual Standard Deviation 0.418 Annual Variance 0.175 Information Ratio 3.301 Tracking Error 0.438 Treynor Ratio 45.99 Total Fees $106753.70 Estimated Strategy Capacity $12000.00 Lowest Capacity Asset SVXY 32N73JS5UWN0M|SVXY V0H08FY38ZFP Portfolio Turnover 0.36% |
# region imports
from AlgorithmImports import *
import cvxopt as cvx
from scipy import special
from scipy.stats import gamma, invweibull, norm
# endregion
class MaxLossVaRShortPut(QCAlgorithm):
def initialize(self):
self.set_start_date(2021, 1, 1)
self.set_end_date(2025, 1, 1)
self.set_cash(100000)
self.set_security_initializer(VolumeShareFillSecurityInitializer(self, 1))
self.universe_settings.data_normalization_mode = DataNormalizationMode.RAW
# We want to trade the 95%VaR.
self._alpha = 0.95
self.lookback = 1000
self.trade_period = 5
self._orders = {}
self.symbols = [self.add_equity(ticker).symbol for ticker in ["TQQQ", "SVXY", "TMF", "EDZ", "UGL", "UUP"]]
# Rebalance weekly since we're trading the option expiring this week to avoid over-trading.
self.schedule.on(
self.date_rules.week_start(self.symbols[0]),
self.time_rules.after_market_open(self.symbols[0], 1),
self.rebalance
)
def rebalance(self):
# Call the historical data to fit the GEV distribution to model max loss.
# We get at least 252 data points.
ret = self.history(self.symbols, 252+self.lookback+self.trade_period, Resolution.DAILY).close.unstack(0).pct_change().dropna()
# Obtain the position size and strike levels.
strikes = self.get_strikes(ret)
weights = self.get_weight(ret)
# Short a put to earn credit in N% confidence that it will not be assigned.
for symbol, strike in strikes.items():
chain = self.option_chain(symbol)
# Trade the week-expiring put to ensure short value and liquidity.
filtered = [x for x in chain if x.right == OptionRight.PUT and x.expiry <= self.time + timedelta(self.trade_period + 1)]
if filtered:
expiry = max(x.expiry for x in filtered)
put = sorted(
[x for x in filtered if x.expiry == expiry],
key=lambda x: abs(x.strike - strike)
)
if not put:
continue
# Request the contract data for trading.
put_symbol = self.add_option_contract(put[0]).symbol
# Calculate the actual order size of the contract.
strike = put_symbol.id.strike_price
quantity = weights[symbol] * self.portfolio.total_portfolio_value / strike // self.securities[put_symbol].symbol_properties.contract_multiplier
if quantity:
self._orders[put_symbol] = quantity
def get_strikes(self, ret):
put_strikes = {}
# Obtain the rolling max loss to fit the Inverse Weibull distribution to model catastrophic loss.
max_loss = ((1 + ret).rolling(self.trade_period).apply(np.prod, raw=True) - 1).rolling(self.lookback).min().iloc[self.lookback+self.trade_period:]
for symbol in max_loss.columns:
# Fit Inverse Weibull distribution to obtain its parameters to get the VaR.
params = invweibull.fit(max_loss[symbol])
shape, loc, scale = params
# Get N% VaR of each symbol analytically as the N% confident level that the put will not be assigned as our strike candidate.
pi = scale * (-np.log(1 - self._alpha) ** (1 / shape))
var_ = loc + pi
put_strikes[symbol] = (1 - abs(var_)) * self.securities[symbol].price
return put_strikes
def get_weight(self, ret):
# Equally dissipate the CVaR as a coherence risk measure among the universe of the underlying.
# source: https://palomar.home.ece.ust.hk/papers/2015/FengPalomar-TSP2015%20-%20risk_parity_portfolio.pdf
R = ret.dropna().values
n = R.shape[1]
T = R.shape[0]
S = np.cov(R.T)
mu = R.mean(axis=0).reshape(-1, 1)
e = R.std(axis=0).reshape(-1, 1)
w_k = budget = np.array(n * [1. / n]).reshape(-1, 1)
tol = 0.0001; max_iter = 20; iters = 1; fun_ = 1e7
while iters < max_iter:
w = w_k
A = [None]*n
gw = [None]*n
for i in range(n):
M = np.zeros(S.shape)
M[i] = S[i]
q = norm.ppf(1 - self._alpha, mu[i], e[i])
k_2 = norm.pdf(q, mu[i], e[i])
delta_g = -mu[i] + k_2 * ((w.T @ S @ w) * (M + M.T) @ w - (w.T @ M @ w) * S @ w) / (w.T @ S @ w)**(3/2) \
+ budget[i] * mu - k_2 * budget[i] * (S @ w) / np.sqrt(w.T @ S @ w)
g = -mu[i] * w[i] + k_2 * (w.T @ M @ w) / np.sqrt(w.T @ S @ w) + budget[i] * mu.T @ w - k_2 * budget[i] * np.sqrt(w.T @ S @ w)
A[i] = delta_g.flatten()
gw[i] = float(g)
A = np.array(A)
gw = np.array(gw).reshape(-1, 1)
Q = 2 * A.T @ A + 0.01 * np.eye(n)
q = 2 * A.T @ gw - Q @ w
G = -cvx.matrix(np.eye(n)) # negative n x n identity matrix
h = cvx.matrix(0.0, (n ,1))
A1 = cvx.matrix(1.0, (1,n))
b = cvx.matrix(1.0)
opt = cvx.solvers.qp(cvx.matrix(Q), cvx.matrix(q), G, h, A1, b)
w = np.asarray(opt['x'])
fun = opt['primal objective']
w_k += (w - w_k) / iters
if abs(fun - fun_) < tol:
break
iters += 1
fun_ = fun
return {symbol: weight for symbol, weight in zip(ret.columns, w)}
def on_data(self, slice):
# Order when there is a quote to be more realistic and likely to be filled.
for symbol, size in self._orders.copy().items():
bar = slice.quote_bars.get(symbol)
if bar:
self.limit_order(symbol, -size, round(bar.high, 2))
self._orders.pop(symbol)
def on_assignment_order_event(self, assignment_event):
# Liquidate the assigned underlyings to avoid volatility.
self.market_order(
assignment_event.symbol.underlying,
-assignment_event.fill_quantity * self.securities[assignment_event.symbol].symbol_properties.contract_multiplier,
tag="liquidate assigned"
)
class VolumeShareFillModel(FillModel):
def __init__(self, algorithm: QCAlgorithm, maximum_ratio: float = 1):
self.algorithm = algorithm
self.maximum_ratio = maximum_ratio
self.absolute_remaining_by_order_id = {}
def market_fill(self, asset, order):
absolute_remaining = self.absolute_remaining_by_order_id.get(order.id, order.absolute_quantity)
fill = super().market_fill(asset, order)
# Set the fill amount to 100% of the previous bar.
volume = asset.bid_size if order.quantity < 0 else asset.ask_size
fill.fill_quantity = np.sign(order.quantity) * volume * self.maximum_ratio
if (min(abs(fill.fill_quantity), absolute_remaining) == absolute_remaining):
fill.fill_quantity = np.sign(order.quantity) * absolute_remaining
fill.status = OrderStatus.FILLED
self.absolute_remaining_by_order_id.pop(order.id, None)
else:
fill.status = OrderStatus.PARTIALLY_FILLED
self.absolute_remaining_by_order_id[order.id] = absolute_remaining - abs(fill.fill_quantity)
price = fill.fill_price
return fill
class VolumeShareFillSecurityInitializer(BrokerageModelSecurityInitializer):
def __init__(self, algorithm: QCAlgorithm, fill_ratio: float = 1) -> None:
super().__init__(algorithm.brokerage_model, FuncSecuritySeeder(algorithm.get_last_known_prices))
self.fill_model = VolumeShareFillModel(algorithm, fill_ratio)
def initialize(self, security: Security) -> None:
super().initialize(security)
security.set_fill_model(self.fill_model)
security.set_slippage_model(VolumeShareSlippageModel(1, 0.5))