| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from clr import AddReference
AddReference("System.Core")
AddReference("System.Collections")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Data.UniverseSelection import *
class StatelessCoarseUniverseSelectionBenchmark(QCAlgorithm):
def Initialize(self):
self.UniverseSettings.Resolution = Resolution.Daily
self.SetStartDate(2017, 11, 1)
self.SetEndDate(2018, 1, 1)
self.SetCash(50000)
self.AddUniverse(self.CoarseSelectionFunction)
self.numberOfSymbols = 250
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def CoarseSelectionFunction(self, coarse):
selected = [x for x in coarse if (x.HasFundamentalData)]
# sort descending by daily dollar volume
sortedByDollarVolume = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
# return the symbol objects of the top entries from our sorted collection
return [ x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbols] ]
def OnSecuritiesChanged(self, changes):
# if we have no changes, do nothing
if changes is None: return
# liquidate removed securities
for security in changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
for security in changes.AddedSecurities:
self.SetHoldings(security.Symbol, 0.001)