| Overall Statistics |
|
Total Trades 7355 Average Win 0.77% Average Loss -0.21% Compounding Annual Return 49.260% Drawdown 19.000% Expectancy 1.546 Net Profit 5578445.664% Sharpe Ratio 2.263 Probabilistic Sharpe Ratio 100.000% Loss Rate 46% Win Rate 54% Profit-Loss Ratio 3.69 Alpha 0.31 Beta 0.358 Annual Standard Deviation 0.147 Annual Variance 0.022 Information Ratio 1.609 Tracking Error 0.168 Treynor Ratio 0.929 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset RYURX.RYURX 2S |
# Import packages
import numpy as np
import pandas as pd
import scipy as sc
from scipy import stats
class AccelDualMomentumInOut(QCAlgorithm):
def Initialize(self):
self.SetStartDate(1995, 1, 1) # Set Start Date
#self.SetEndDate(2022,2,28) # Set End Date
self.SetCash(10000) # Set Strategy Cash
#self.aVFINX = self.AddData(VFINX, "VFINX", Resolution.Daily).Symbol
self.aQQQ = self.AddData(QQQ, "QQQ", Resolution.Daily).Symbol
self.aVINEX = self.AddData(VINEX, "VINEX", Resolution.Daily).Symbol
self.aVUSTX = self.AddData(VUSTX, "VUSTX", Resolution.Daily).Symbol
self.aVBILX = self.AddData(VBILX, "VBILX", Resolution.Daily).Symbol
self.aRYURX = self.AddData(RYURX, "RYURX", Resolution.Daily).Symbol
self.aLBMA = self.AddData(LBMA, "LBMA", Resolution.Daily).Symbol
#self.aGLD = self.AddData(GLD, "GLD", Resolution.Daily).Symbol
self.aVIPSX = self.AddData(VIPSX, "VIPSX", Resolution.Daily).Symbol
self.aCASH = self.AddData(CASH, "CASH", Resolution.Daily).Symbol
self.indicator = self.AddData(MOMENTUM, "MOMENTUM", Resolution.Daily).Symbol
self.leverage = 1 # Set leverage | A value of 1 indicates no leverage | A value of 2 indicates 100% leverage
#self.Securities["VFINX"].SetLeverage(self.leverage)
self.Securities["QQQ"].SetLeverage(self.leverage)
self.Securities["VINEX"].SetLeverage(self.leverage)
self.Securities["VUSTX"].SetLeverage(self.leverage)
self.Securities["LBMA"].SetLeverage(self.leverage)
#self.Securities["GLD"].SetLeverage(self.leverage)
self.Securities["VIPSX"].SetLeverage(self.leverage)
self.Securities["CASH"].SetLeverage(self.leverage)
self.Securities["VBILX"].SetLeverage(self.leverage)
self.Securities["RYURX"].SetLeverage(self.leverage)
self.basket_out = ['VUSTX', 'VBILX', 'RYURX']
# Set trading frequency
self.monthly = 0
self.annual = 0
self.daily = 1
self.trading_fee = 5 # Fee per trade
self.trading_day = 21 # Set trading day | Value = 21 is last trading day of month
self.GetParameter("trading_day")
def shiftAssets(self, target):
if not (self.Portfolio[target].Invested):
for symbol in self.Portfolio.Keys:
self.Liquidate(symbol)
if not self.Portfolio.Invested:
self.SetHoldings(target, 1*self.leverage)
def getMonthTradingDay(self):
month_last_day = DateTime(self.Time.year, self.Time.month, DateTime.DaysInMonth(self.Time.year, self.Time.month))
tradingDays = self.TradingCalendar.GetDaysByType(TradingDayType.BusinessDay, DateTime(self.Time.year, self.Time.month, 1), month_last_day)
tradingDays = [day.Date.date() for day in tradingDays]
return tradingDays[-22 + self.trading_day]
def getYearLastTradingDay(self):
year_last_day = DateTime(self.Time.year, 12, DateTime.DaysInMonth(self.Time.year, 12))
tradingDays = self.TradingCalendar.GetDaysByType(TradingDayType.BusinessDay, DateTime(self.Time.year, 12, 1), year_last_day)
tradingDays = [day.Date.date() for day in tradingDays]
return tradingDays [-1]
def OnData(self, data):
if (self.daily ==1):
if data.ContainsKey(self.indicator):
ticker = data[self.indicator].GetProperty('Indicator')
if (ticker =="VINEX"):
#self.Securities["VINEX"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aVINEX)
elif (ticker =="QQQ"):
#self.Securities["QQQ"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aQQQ)
elif (ticker =="VUSTX"):
#self.Securities["VUSTX"].SetFeeModel(MonthlyCustomFeeModel())
self.Liquidate()
dataframe = self.History(self.basket_out, 180, Resolution.Daily)
df = dataframe['close'].unstack(level=0)
self.adaptive_asset_allocation(df, 3, 40, 90, self.Portfolio.Cash, 1)
#self.shiftAssets(self.aVUSTX)
elif (ticker =="LBMA"):
#self.Securities["LBMA"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aLBMA)
elif (ticker =="VIPSX"):
#self.Securities["VIPSX"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aVIPSX)
elif (ticker =="CASH"):
#self.Securities["CASH"].SetFeeModel(MonthlyCustomFeeModel())
self.Liquidate()
dataframe = self.History(self.basket_out, 180, Resolution.Daily)
df = dataframe['close'].unstack(level=0)
self.adaptive_asset_allocation(df, 3, 40, 90, self.Portfolio.Cash, 1)
#self.shiftAssets(self.aCASH)
elif (ticker =="GLD"):
#self.Securities["GLD"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aGLD)
if (self.monthly ==1):
if (self.Time.date() == self.getMonthTradingDay()):
if data.ContainsKey(self.indicator):
ticker = data[self.indicator].GetProperty('Indicator')
if (ticker =="VINEX"):
self.Securities["VINEX"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aVINEX)
elif (ticker =="QQQ"):
self.Securities["QQQ"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aQQQ)
elif (ticker =="VUSTX"):
self.Securities["VUSTX"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aVUSTX)
elif (ticker =="LBMA"):
self.Securities["LBMA"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aLBMA)
elif (ticker =="VIPSX"):
self.Securities["VIPSX"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aVIPSX)
elif (ticker =="CASH"):
self.Securities["CASH"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aCASH)
elif (ticker =="GLD"):
self.Securities["GLD"].SetFeeModel(MonthlyCustomFeeModel())
self.shiftAssets(self.aGLD)
if (self.annual ==1):
if (self.Time.date() == self.getYearLastTradingDay()):
if data.ContainsKey(self.indicator):
ticker = data[self.indicator].GetProperty('Indicator')
if (ticker =="VINEX"):
self.Securities["VINEX"].FeeModel = ConstantFeeModel(self.trading_fee)
self.shiftAssets(self.aVINEX)
elif (ticker =="QQQ"):
self.Securities["QQQ"].FeeModel = ConstantFeeModel(self.trading_fee)
self.shiftAssets(self.aQQQ)
elif (ticker =="VUSTX"):
self.Securities["VUSTX"].FeeModel = ConstantFeeModel(self.trading_fee)
self.shiftAssets(self.aVUSTX)
elif (ticker =="LBMA"):
self.Securities["LBMA"].FeeModel = ConstantFeeModel(self.trading_fee)
self.shiftAssets(self.aLBMA)
elif (ticker =="VIPSX"):
self.Securities["VIPSX"].FeeModel = ConstantFeeModel(self.trading_fee)
self.shiftAssets(self.aVIPSX)
elif (ticker =="CASH"):
self.Securities["CASH"].FeeModel = ConstantFeeModel(self.trading_fee)
self.shiftAssets(self.aCASH)
elif (ticker =="GLD"):
self.Securities["GLD"].FeeModel = ConstantFeeModel(self.trading_fee)
self.shiftAssets(self.aGLD)
# Charts
self.Plot("Margin", "Remaining", self.Portfolio.MarginRemaining)
self.Plot("Margin", "Used", self.Portfolio.TotalMarginUsed)
self.Plot("Cash", "Remaining", self.Portfolio.Cash)
self.Plot("Cash", "Remaining", self.Portfolio.TotalHoldingsValue)
#self.Plot("VFINX", "Held", self.Portfolio["VFINX"].Quantity)
self.Plot("VINEX", "Held", self.Portfolio["VINEX"].Quantity)
self.Plot("VUSTX", "Held", self.Portfolio["VUSTX"].Quantity)
self.Plot("VIPSX", "Held", self.Portfolio["VIPSX"].Quantity)
#self.Plot("GLD", "Held", self.Portfolio["GLD"].Quantity)
self.Plot("CASH", "Held", self.Portfolio["CASH"].Quantity)
self.Plot("LBMA", "Held", self.Portfolio["LBMA"].Quantity)
def adaptive_asset_allocation(self, df, nlargest, volatility_window, return_window, portfolio_value, leverage):
window_returns = np.log(df.iloc[-1]) - np.log(df.iloc[0])
nlargest = list(window_returns.nlargest(nlargest).index)
returns = df[nlargest].pct_change()
returns_cov_normalized = returns[-volatility_window:].apply(lambda x: np.log(1+x)).cov()
returns_corr_normalized = returns[-volatility_window:].apply(lambda x: np.log(1+x)).corr()
returns_std = returns.apply(lambda x: np.log(1+x)).std()
port_returns = []
port_volatility = []
port_weights = []
num_assets = len(returns.columns)
num_portfolios = 100
individual_rets = window_returns[nlargest]
for port in range(num_portfolios):
weights = np.random.random(num_assets)
weights = weights/np.sum(weights)
port_weights.append(weights)
rets = np.dot(weights, individual_rets)
port_returns.append(rets)
var = returns_cov_normalized.mul(weights, axis=0).mul(weights, axis=1).sum().sum()
sd = np.sqrt(var)
ann_sd = sd * np.sqrt(256)
port_volatility.append(ann_sd)
data = {'Returns': port_returns, 'Volatility': port_volatility}
hover_data = []
for counter, symbol in enumerate(nlargest):
data[symbol] = [w[counter] for w in port_weights]
hover_data.append(symbol)
portfolios_V1 = pd.DataFrame(data)
min_var_portfolio = portfolios_V1.iloc[portfolios_V1['Volatility'].idxmin()]
max_sharpe_portfolio = portfolios_V1.iloc[(portfolios_V1['Returns'] / portfolios_V1['Volatility']).idxmax()]
proportions = min_var_portfolio[nlargest]
index = 0
for proportion in proportions:
self.SetHoldings(nlargest[index], proportion * leverage)
self.Debug('{}% of portfolio in {}'.format(proportion * leverage, nlargest[index]))
index += 1
class LBMA(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/81ixmlr8cx1uxgq/LBMA.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = LBMA()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%d/%m/%Y")
index.EndTime = index.Time + timedelta(days=1)
index.Value = data[1]
index["LBMA"] = float(data[1])
return index
class VIPSX(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/51npkwxesct345x/VIPSX.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = VIPSX()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%d/%m/%Y")
index.EndTime = index.Time + timedelta(days=1)
index.Value = data[4]
index["Open"] = float(data[1])
index["High"] = float(data[2])
index["Low"] = float(data[3])
index["Close"] = float(data[4])
return index
class VUSTX(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/hnv2swusm9wra5w/VUSTX.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = VUSTX()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%d/%m/%Y")
index.EndTime = index.Time + timedelta(days=1)
index.Value = data[4]
index["Open"] = float(data[1])
index["High"] = float(data[2])
index["Low"] = float(data[3])
index["Close"] = float(data[4])
return index
class VFINX(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/zzh0ydo8t8l5ds4/VFINX.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = VFINX()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%d/%m/%Y")
index.EndTime = index.Time + timedelta(days=1)
index.Value = data[4]
index["Open"] = float(data[1])
index["High"] = float(data[2])
index["Low"] = float(data[3])
index["Close"] = float(data[4])
return index
class VINEX(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/3otgob32pyl0hz8/VINEX.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = VINEX()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%d/%m/%Y")
index.EndTime = index.Time + timedelta(days=1)
index.Value = data[4]
index["Open"] = float(data[1])
index["High"] = float(data[2])
index["Low"] = float(data[3])
index["Close"] = float(data[4])
return index
class GLD(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/c9asn799ugf8kja/GLD.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = GLD()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%d/%m/%Y")
index.EndTime = index.Time + timedelta(days=1)
index.Value = data[4]
index["Open"] = float(data[1])
index["High"] = float(data[2])
index["Low"] = float(data[3])
index["Close"] = float(data[4])
return index
class CASH(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/496wpuy5qrlq9za/CASH.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = CASH()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%d/%m/%Y")
index.EndTime = index.Time + timedelta(days=1)
index.Value = data[1]
index["Close"] = float(data[1])
return index
class QQQ(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/53tqrfh84h7h1ax/QQQ.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = QQQ()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%Y-%m-%d")
index.EndTime = index.Time + timedelta(days=1)
index.Value = data[1]
index["Close"] = float(data[1])
return index
class VBILX(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/sqlkx4q3w14dt90/VBILX.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = VBILX()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%Y-%m-%d")
index.EndTime = index.Time + timedelta(days=1)
index.Value = data[5]
index["Open"] = float(data[1])
index["High"] = float(data[2])
index["Low"] = float(data[3])
index["Close"] = float(data[4])
index["Adj Close"] = float(data[5])
return index
class RYURX(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/rtzx03fzejd36ok/RYURX.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = RYURX()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%Y-%m-%d")
index.EndTime = index.Time + timedelta(days=1)
index.Value = data[5]
index["Open"] = float(data[1])
index["High"] = float(data[2])
index["Low"] = float(data[3])
index["Close"] = float(data[4])
index["Adj Close"] = float(data[5])
return index
class MOMENTUM(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/t62ha5ynf3n4gge/Indicator_VFISX_FCYIX.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = MOMENTUM()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%Y-%m-%d")
index.EndTime = index.Time + timedelta(days=1)
index.SetProperty("Indicator", str(data[1]))
return index
class MonthlyCustomFeeModel:
def GetOrderFee(self, parameters):
self.margin_rate = 0.015 #Set Margin Fee
self.trading_fee = 5 #Set fee per trade
fee = self.trading_fee + (parameters.Security.Leverage-1)*parameters.Security.Price*parameters.Order.AbsoluteQuantity*(self.margin_rate/12)
return OrderFee(CashAmount(fee, 'USD'))