| Overall Statistics |
|
Total Trades 611 Average Win 0.20% Average Loss -0.24% Compounding Annual Return 6.149% Drawdown 9.800% Expectancy 0.581 Net Profit 92.817% Sharpe Ratio 1.151 Loss Rate 15% Win Rate 85% Profit-Loss Ratio 0.85 Alpha 0.011 Beta 2.479 Annual Standard Deviation 0.052 Annual Variance 0.003 Information Ratio 0.774 Tracking Error 0.052 Treynor Ratio 0.024 Total Fees $620.19 |
from math import ceil,floor,isnan
from datetime import datetime
import pandas as pd
import numpy as np
from scipy.optimize import minimize
class AssetAllocationAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2007,1,1) #Set Start Date
self.SetEndDate(2018,1,1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
tickers = ["IEF", "TLT", "SPY", "EFA", "EEM", "JPXN", "XLK", "GLD", "IGV", "XBI"]
self.symbols = []
for i in tickers:
self.symbols.append(self.AddEquity(i, Resolution.Daily).Symbol)
for syl in self.symbols:
syl.window = RollingWindow[TradeBar](252)
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.Rebalancing))
def OnData(self, data):
if data.ContainsKey("SPY"):
for syl in self.symbols:
syl.window.Add(data[syl])
def Rebalancing(self):
data = {}
for syl in self.symbols:
data[syl] = [float(i.Close) for i in syl.window]
df_price = pd.DataFrame(data,columns=data.keys())
daily_return = (df_price / df_price.shift(1)).dropna()
a = PortfolioOptimization(daily_return, 0, len(data))
opt_weight = a.opt_portfolio()
if isnan(sum(opt_weight)): return
self.Log(str(opt_weight))
for i in range(len(data)):
self.SetHoldings(df_price.columns[i], opt_weight[i])
# equally weighted
# self.SetHoldings(self.symbols[i], 1.0/len(data))
class PortfolioOptimization(object):
import numpy as np
import pandas as pd
def __init__(self, df_return, risk_free_rate, num_assets):
self.daily_return = df_return
self.risk_free_rate = risk_free_rate
self.n = num_assets # numbers of risk assets in portfolio
self.target_vol = 0.15
def annual_port_return(self, weights):
# calculate the annual return of portfolio
return np.sum(self.daily_return.mean() * weights) * 252
def annual_port_vol(self, weights):
# calculate the annual volatility of portfolio
return np.sqrt(np.dot(weights.T, np.dot(self.daily_return.cov() * 252, weights)))
def min_func(self, weights):
# method 1: maximize sharp ratio
return - self.annual_port_return(weights) / self.annual_port_vol(weights)
# # method 2: maximize the return with target volatility
# return - self.annual_port_return(weights) / self.target_vol
def opt_portfolio(self):
# maximize the sharpe ratio to find the optimal weights
cons = ({'type': 'eq', 'fun': lambda x: np.sum(np.abs(x)) - 1})
bnds = [(0, 1)] * self.n
opt = minimize(self.min_func, # object function
np.array(self.n * [1. / self.n]), # initial value
method='SLSQP', # optimization method
bounds=bnds, # bounds for variables
constraints=cons) # constraint conditions
opt_weights = opt['x']
return opt_weights