| Overall Statistics |
|
Total Orders 152 Average Win 22.14% Average Loss -7.96% Compounding Annual Return 77.357% Drawdown 66.900% Expectancy 0.941 Start Equity 10000 End Equity 306228.66 Net Profit 2962.287% Sharpe Ratio 1.292 Sortino Ratio 1.296 Probabilistic Sharpe Ratio 53.005% Loss Rate 49% Win Rate 51% Profit-Loss Ratio 2.78 Alpha 0.582 Beta 0.748 Annual Standard Deviation 0.511 Annual Variance 0.261 Information Ratio 1.118 Tracking Error 0.497 Treynor Ratio 0.882 Total Fees $555.59 Estimated Strategy Capacity $390000000.00 Lowest Capacity Asset MSTR RBGP9S2961YD Portfolio Turnover 7.01% |
# random_forest_01 (ChatGPT)
from AlgorithmImports import *
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
class MLTradingAlgorithm(QCAlgorithm):
def Initialize(self):
# ✅ Step 1: Set Up Algorithm Parameters
self.SetStartDate(2019, 1, 1) # Start date
self.SetEndDate(2024, 12, 31) # End date
self.SetCash(10000) # Initial capital
# ✅ Step 2: Add NVDA Stock
self.symbol = self.AddEquity("MSTR", Resolution.Daily).Symbol
# ✅ Step 3: Correctly Initialize RollingWindow to Store 200 Days of TradeBar Data
self.data = RollingWindow[TradeBar](200) # Store last 200 bars
# ✅ Step 4: Warm-Up Period (Ensure Sufficient Historical Data Before Trading)
self.SetWarmUp(200)
# ✅ Step 5: Initialize Machine Learning Model
self.model = RandomForestClassifier(n_estimators=100, random_state=42)
self.training_count = 0 # Add count
# ✅ Step 6: Schedule Training Every Monday at 10:00 AM
self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday),
self.TimeRules.At(10, 0),
self.TrainModel)
def OnData(self, data):
# ✅ Step 7: Ensure Data Exists Before Accessing
if not data.ContainsKey(self.symbol):
return # Skip if no data
trade_bar = data[self.symbol]
if trade_bar is None:
return
# ✅ Step 8: Add TradeBar Data to Rolling Window
self.data.Add(trade_bar)
# ✅ Step 9: Ensure Sufficient Data Before Making Predictions
if not self.data.IsReady or self.data.count < 200:
return
# ✅ Ensure Model is Fitted Before Prediction
if not hasattr(self, "is_model_trained") or not self.is_model_trained:
self.Debug("Model is not trained yet. Skipping prediction.")
return
# ✅ Step 10: Extract Features for Prediction
df = self.GetFeatureDataFrame()
if df is None:
return
latest_features = df.iloc[-1, :-1].values.reshape(1, -1)
# ✅ Ensure Model is Trained Before Making Predictions
try:
prediction = self.model.predict(latest_features)[0] # 1 = Buy, 0 = Sell
except:
self.Debug("Error: Model not trained yet.")
return
# ✅ Step 11: Trading Logic Based on Predictions
holdings = self.Portfolio[self.symbol].Quantity
if prediction == 1 and holdings <= 0:
self.SetHoldings(self.symbol, 1) # Buy full allocation
elif prediction == 0 and holdings > 0:
self.Liquidate(self.symbol) # Sell position
def TrainModel(self):
# Step 12: Prepare Training Data
df = self.GetFeatureDataFrame()
if df is None or len(df) < 50: # Minimum rows for meaningful split
self.Debug("Insufficient data for training.")
return
# Step 13: Split Data into Training and Testing Sets
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target (Buy/Sell)
# Split 80% train, 20% test, no shuffling to preserve time-series order
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, shuffle=False, random_state=42
)
# Step 14: Train the Random Forest Model on Training Data
self.model.fit(X_train, y_train)
self.is_model_trained = True
# Step 15: Evaluate Model Accuracy
# Training accuracy (in-sample)
y_train_pred = self.model.predict(X_train)
train_accuracy = accuracy_score(y_train, y_train_pred)
# Testing accuracy (out-of-sample)
y_test_pred = self.model.predict(X_test)
test_accuracy = accuracy_score(y_test, y_test_pred)
# Log both accuracies
self.training_count += 1
self.Debug(f"Training #{self.training_count}: Training Accuracy: {train_accuracy:.2%}, Testing Accuracy: {test_accuracy:.2%}")
def GetFeatureDataFrame(self):
# ✅ Step 15: Convert RollingWindow Data to DataFrame
if self.data.count < 200:
return None # Not enough data
close_prices = [bar.Close for bar in self.data]
df = pd.DataFrame(close_prices, columns=["Close"])
# ✅ Step 16: Feature Engineering
df["SMA_10"] = df["Close"].rolling(window=10).mean()
df["SMA_50"] = df["Close"].rolling(window=50).mean()
# RSI Calculation
delta = df["Close"].diff()
gain = (delta.where(delta > 0, 0)).rolling(14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(14).mean()
rs = gain / loss
df["RSI"] = 100 - (100 / (1 + rs))
# MACD Calculation
df["MACD"] = df["Close"].ewm(span=12, adjust=False).mean() - df["Close"].ewm(span=26, adjust=False).mean()
df["MACD_Signal"] = df["MACD"].ewm(span=9, adjust=False).mean()
# Historical Volatility (HV)
df["HV_30"] = df["Close"].pct_change().rolling(window=30).std() * np.sqrt(252)
# ✅ Step 17: Define Target Variable (1 = Buy, 0 = Sell)
df["Target"] = (df["Close"].shift(-1) > df["Close"]).astype(int)
# ✅ Step 18: Drop NaN values
df.dropna(inplace=True)
return df