| Overall Statistics |
|
Total Trades 105 Average Win 5.42% Average Loss -10.47% Compounding Annual Return -95.486% Drawdown 82.400% Expectancy -0.183 Net Profit -77.856% Sharpe Ratio -0.593 Probabilistic Sharpe Ratio 4.618% Loss Rate 46% Win Rate 54% Profit-Loss Ratio 0.52 Alpha -0.819 Beta -0.495 Annual Standard Deviation 1.355 Annual Variance 1.836 Information Ratio -0.521 Tracking Error 1.482 Treynor Ratio 1.624 Total Fees $0.00 |
# https://quantpedia.com/strategies/trading-wti-brent-spread/
#
# A 20-day moving average of WTI/Brent spread is calculated each day. If the current spread value is above SMA 20 then we enter a short position
# in the spread on close (betting that the spread will decrease to the fair value represented by SMA 20). The trade is closed at the close of the
# trading day when the spread crosses below fair value. If the current spread value is below SMA 20 then we enter a long position betting that
# the spread will increase and the trade is closed at the close of the trading day when the spread crosses above fair value.
from collections import deque
import numpy as np
class WTI_BRENT_Spread(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 1, 1)
self.SetEndDate(2020, 6, 28)
self.SetCash(100000)
self.symbols = [
"CME_CL1", # Crude Oil Futures, Continuous Contract
"ICE_B1" # Brent Crude Oil Futures, Continuous Contract
]
self.spread = deque(maxlen=2)
# True -> Quantpedia data
# False -> Quandl free data
self.use_quantpedia_data = True
if not self.use_quantpedia_data:
self.symbols = ['CHRIS/' + x for x in self.symbols]
for symbol in self.symbols:
data = None
if self.use_quantpedia_data:
data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
else:
data = self.AddData(QuandlFutures, symbol, Resolution.Daily)
#data.SetLeverage(2)
def OnData(self, data):
symbol1 = self.symbols[0]
symbol2 = self.symbols[1]
if self.Securities.ContainsKey(symbol1) and self.Securities.ContainsKey(symbol2):
price1 = self.Securities[symbol1].Price
price2 = self.Securities[symbol2].Price
if price1 != 0 and price2 != 0:
spread = price1 - price2
self.spread.append(spread)
# MA calculation
if len(self.spread) == self.spread.maxlen:
spreads = [x for x in self.spread]
spread_ma20 = np.average(spreads)
current_spread = spreads[-1]
if current_spread > spread_ma20:
if self.Portfolio[symbol1].IsLong:
self.Liquidate(symbol1)
if not self.Portfolio[symbol1].IsShort:
self.SetHoldings(symbol1, -1)
elif current_spread < spread_ma20:
if self.Portfolio[symbol1].IsShort:
self.Liquidate(symbol1)
if not self.Portfolio[symbol1].IsLong:
self.SetHoldings(symbol1, 1)
# Quantpedia data
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("http://data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
try:
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['settle'] = float(split[1])
data.Value = float(split[1])
except:
return None
return data
# Quandl free data
class QuandlFutures(PythonQuandl):
def __init__(self):
self.ValueColumnName = "settle"