| Overall Statistics |
|
Total Orders 11326 Average Win 0.08% Average Loss -0.08% Compounding Annual Return 6.228% Drawdown 16.300% Expectancy 0.046 Start Equity 100000 End Equity 129777.94 Net Profit 29.778% Sharpe Ratio 0.139 Sortino Ratio 0.167 Probabilistic Sharpe Ratio 8.074% Loss Rate 47% Win Rate 53% Profit-Loss Ratio 0.98 Alpha -0.017 Beta 0.632 Annual Standard Deviation 0.108 Annual Variance 0.012 Information Ratio -0.466 Tracking Error 0.077 Treynor Ratio 0.024 Total Fees $13618.78 Estimated Strategy Capacity $9700000.00 Lowest Capacity Asset EEMV V0WRDXSSH205 Portfolio Turnover 51.06% |
#region imports
from AlgorithmImports import *
#endregion
from clr import AddReference
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm.Framework")
from QuantConnect import Resolution, Extensions
from QuantConnect.Algorithm.Framework.Alphas import *
from QuantConnect.Algorithm.Framework.Portfolio import *
from itertools import groupby
from datetime import datetime, timedelta
class EqualWeightingPortfolioConstructionModel(PortfolioConstructionModel):
'''Provides an implementation of IPortfolioConstructionModel that gives equal weighting to all securities.
The target percent holdings of each security is 1/N where N is the number of securities.
For insights of direction InsightDirection.Up, long targets are returned and
for insights of direction InsightDirection.Down, short targets are returned.'''
def __init__(self, rebalance = Resolution.Daily, portfolioBias = PortfolioBias.LongShort):
'''Initialize a new instance of EqualWeightingPortfolioConstructionModel
Args:
rebalance: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function.
If None will be ignored.
The function returns the next expected rebalance time for a given algorithm UTC DateTime.
The function returns null if unknown, in which case the function will be called again in the
next loop. Returning current time will trigger rebalance.
portfolioBias: Specifies the bias of the portfolio (Short, Long/Short, Long)'''
self.portfolioBias = portfolioBias
# If the argument is an instance of Resolution or Timedelta
# Redefine rebalancingFunc
rebalancingFunc = rebalance
if isinstance(rebalance, int):
rebalance = Extensions.ToTimeSpan(rebalance)
if isinstance(rebalance, timedelta):
rebalancingFunc = lambda dt: dt + rebalance
if rebalancingFunc:
self.SetRebalancingFunc(rebalancingFunc)
def DetermineTargetPercent(self, activeInsights):
'''Will determine the target percent for each insight
Args:
activeInsights: The active insights to generate a target for'''
result = {}
# give equal weighting to each security
count = sum(x.Direction != InsightDirection.Flat and self.RespectPortfolioBias(x) for x in activeInsights)
percent = 0 if count == 0 else 1.0 / count
for insight in activeInsights:
result[insight] = (insight.Direction if self.RespectPortfolioBias(insight) else InsightDirection.Flat) * percent
return result
def RespectPortfolioBias(self, insight):
'''Method that will determine if a given insight respects the portfolio bias
Args:
insight: The insight to create a target for
'''
return self.portfolioBias == PortfolioBias.LongShort or insight.Direction == self.portfolioBias
# Your New Python File#region imports
from AlgorithmImports import *
#endregion
from clr import AddReference
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm.Framework.Alphas import *
from datetime import timedelta
class HistoricalReturnsAlphaModel(AlphaModel):
'''Uses Historical returns to create insights.'''
def __init__(self, *args, **kwargs):
'''Initializes a new default instance of the HistoricalReturnsAlphaModel class.
Args:
lookback(int): Historical return lookback period
resolution: The resolution of historical data'''
self.lookback = kwargs['lookback'] if 'lookback' in kwargs else 1
self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Daily
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), self.lookback)
self.symbolDataBySymbol = {}
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
if symbolData.CanEmit:
direction = InsightDirection.Flat
magnitude = symbolData.Return
if magnitude > 0: direction = InsightDirection.Up
if magnitude < 0: direction = InsightDirection.Down
insights.append(Insight.Price(symbol, self.predictionInterval, direction, magnitude, None))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
for removed in changes.RemovedSecurities:
symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None)
if symbolData is not None:
symbolData.RemoveConsolidators(algorithm)
# initialize data for added securities
symbols = [ x.Symbol for x in changes.AddedSecurities ]
history = algorithm.History(symbols, self.lookback, self.resolution)
if history.empty: return
tickers = history.index.levels[0]
for ticker in tickers:
symbol = SymbolCache.GetSymbol(ticker)
if symbol not in self.symbolDataBySymbol:
symbolData = SymbolData(symbol, self.lookback)
self.symbolDataBySymbol[symbol] = symbolData
symbolData.RegisterIndicators(algorithm, self.resolution)
symbolData.WarmUpIndicators(history.loc[ticker])
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, lookback):
self.Symbol = symbol
self.ROC = RateOfChange('{}.ROC({})'.format(symbol, lookback), lookback)
self.Consolidator = None
self.previous = 0
def RegisterIndicators(self, algorithm, resolution):
self.Consolidator = algorithm.ResolveConsolidator(self.Symbol, resolution)
algorithm.RegisterIndicator(self.Symbol, self.ROC, self.Consolidator)
def RemoveConsolidators(self, algorithm):
if self.Consolidator is not None:
algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator)
def WarmUpIndicators(self, history):
for tuple in history.itertuples():
self.ROC.Update(tuple.Index, tuple.close)
@property
def Return(self):
return float(self.ROC.Current.Value)
@property
def CanEmit(self):
if self.previous == self.ROC.Samples:
return False
self.previous = self.ROC.Samples
return self.ROC.IsReady
def __str__(self, **kwargs):
return '{}: {:.2%}'.format(self.ROC.Name, (1 + self.Return)**252 - 1)#region imports
from AlgorithmImports import *
#endregion
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Indicators")
from System import *
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Portfolio import *
from Portfolio.MinimumVariancePortfolioOptimizer import MinimumVariancePortfolioOptimizer
from datetime import timedelta
import numpy as np
import pandas as pd
### <summary>
### Provides an implementation of Mean-Variance portfolio optimization based on modern portfolio theory.
### The default model uses the MinimumVariancePortfolioOptimizer that accepts a 63-row matrix of 1-day returns.
### </summary>
class MeanVarianceOptimizationPortfolioConstructionModel(PortfolioConstructionModel):
def __init__(self,
rebalance = Resolution.Daily,
portfolioBias = PortfolioBias.LongShort,
lookback = 1,
period = 63,
resolution = Resolution.Daily,
targetReturn = 0.02,
optimizer = None):
"""Initialize the model
Args:
rebalance: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function.
If None will be ignored.
The function returns the next expected rebalance time for a given algorithm UTC DateTime.
The function returns null if unknown, in which case the function will be called again in the
next loop. Returning current time will trigger rebalance.
portfolioBias: Specifies the bias of the portfolio (Short, Long/Short, Long)
lookback(int): Historical return lookback period
period(int): The time interval of history price to calculate the weight
resolution: The resolution of the history price
optimizer(class): Method used to compute the portfolio weights"""
self.lookback = lookback
self.period = period
self.resolution = resolution
self.portfolioBias = portfolioBias
self.sign = lambda x: -1 if x < 0 else (1 if x > 0 else 0)
lower = 0 if portfolioBias == PortfolioBias.Long else -1
upper = 0 if portfolioBias == PortfolioBias.Short else 1
self.optimizer = MinimumVariancePortfolioOptimizer(lower, upper, targetReturn) if optimizer is None else optimizer
self.symbolDataBySymbol = {}
# If the argument is an instance of Resolution or Timedelta
# Redefine rebalancingFunc
rebalancingFunc = rebalance
if isinstance(rebalance, int):
rebalance = Extensions.ToTimeSpan(rebalance)
if isinstance(rebalance, timedelta):
rebalancingFunc = lambda dt: dt + rebalance
if rebalancingFunc:
self.SetRebalancingFunc(rebalancingFunc)
def ShouldCreateTargetForInsight(self, insight):
if len(PortfolioConstructionModel.FilterInvalidInsightMagnitude(self.Algorithm, [insight])) == 0:
return False
symbolData = self.symbolDataBySymbol.get(insight.Symbol)
if insight.Magnitude is None:
self.algorithm.SetRunTimeError(ArgumentNullException('MeanVarianceOptimizationPortfolioConstructionModel does not accept \'None\' as Insight.Magnitude. Please checkout the selected Alpha Model specifications.'))
return False
symbolData.Add(self.Algorithm.Time, insight.Magnitude)
return True
def DetermineTargetPercent(self, activeInsights):
"""
Will determine the target percent for each insight
Args:
Returns:
"""
targets = {}
symbols = [insight.Symbol for insight in activeInsights]
# Create a dictionary keyed by the symbols in the insights with an pandas.Series as value to create a data frame
returns = { str(symbol) : data.Return for symbol, data in self.symbolDataBySymbol.items() if symbol in symbols }
returns = pd.DataFrame(returns)
# The portfolio optimizer finds the optional weights for the given data
weights = self.optimizer.Optimize(returns)
weights = pd.Series(weights, index = returns.columns)
# Create portfolio targets from the specified insights
for insight in activeInsights:
weight = weights[str(insight.Symbol)]
# don't trust the optimizer
if self.portfolioBias != PortfolioBias.LongShort and self.sign(weight) != self.portfolioBias:
weight = 0
targets[insight] = weight
return targets
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
super().OnSecuritiesChanged(algorithm, changes)
for removed in changes.RemovedSecurities:
symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None)
symbolData.Reset()
# initialize data for added securities
symbols = [ x.Symbol for x in changes.AddedSecurities ]
history = algorithm.History(symbols, self.lookback * self.period, self.resolution)
if history.empty: return
tickers = history.index.levels[0]
for ticker in tickers:
symbol = SymbolCache.GetSymbol(ticker)
if symbol not in self.symbolDataBySymbol:
symbolData = self.MeanVarianceSymbolData(symbol, self.lookback, self.period)
symbolData.WarmUpIndicators(history.loc[ticker])
self.symbolDataBySymbol[symbol] = symbolData
class MeanVarianceSymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, lookback, period):
self.symbol = symbol
self.roc = RateOfChange(f'{symbol}.ROC({lookback})', lookback)
self.roc.Updated += self.OnRateOfChangeUpdated
self.window = RollingWindow[IndicatorDataPoint](period)
def Reset(self):
self.roc.Updated -= self.OnRateOfChangeUpdated
self.roc.Reset()
self.window.Reset()
def WarmUpIndicators(self, history):
for tuple in history.itertuples():
self.roc.Update(tuple.Index, tuple.close)
def OnRateOfChangeUpdated(self, roc, value):
if roc.IsReady:
self.window.Add(value)
def Add(self, time, value):
item = IndicatorDataPoint(self.symbol, time, value)
self.window.Add(item)
@property
def Return(self):
return pd.Series(
data = [(1 + float(x.Value))**252 - 1 for x in self.window],
index = [x.EndTime for x in self.window])
@property
def IsReady(self):
return self.window.IsReady
def __str__(self, **kwargs):
return '{}: {:.2%}'.format(self.roc.Name, (1 + self.window[0])**252 - 1)#region imports
from AlgorithmImports import *
#endregion
from clr import AddReference
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import *
class EmaCrossAlphaModel(AlphaModel):
'''Alpha model that uses an EMA cross to create insights'''
def __init__(self,
fastPeriod = 12,
slowPeriod = 26,
resolution = Resolution.Daily):
'''Initializes a new instance of the EmaCrossAlphaModel class
Args:
fastPeriod: The fast EMA period
slowPeriod: The slow EMA period'''
self.fastPeriod = fastPeriod
self.slowPeriod = slowPeriod
self.resolution = resolution
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod)
self.symbolDataBySymbol = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString)
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
if symbolData.Fast.IsReady and symbolData.Slow.IsReady:
if symbolData.FastIsOverSlow:
if symbolData.Slow > symbolData.Fast:
insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Down))
elif symbolData.SlowIsOverFast:
if symbolData.Fast > symbolData.Slow:
insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up))
symbolData.FastIsOverSlow = symbolData.Fast > symbolData.Slow
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
for added in changes.AddedSecurities:
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is None:
# create fast/slow EMAs
symbolData = SymbolData(added)
symbolData.Fast = algorithm.EMA(added.Symbol, self.fastPeriod, self.resolution)
symbolData.Slow = algorithm.EMA(added.Symbol, self.slowPeriod, self.resolution)
self.symbolDataBySymbol[added.Symbol] = symbolData
else:
# a security that was already initialized was re-added, reset the indicators
symbolData.Fast.Reset()
symbolData.Slow.Reset()
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, security):
self.Security = security
self.Symbol = security.Symbol
self.Fast = None
self.Slow = None
# True if the fast is above the slow, otherwise false.
# This is used to prevent emitting the same signal repeatedly
self.FastIsOverSlow = False
@property
def SlowIsOverFast(self):
return not self.FastIsOverSlow
# Your New Python File#region imports
from AlgorithmImports import *
#endregion
# 0. LOAD LIBRARIES
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Orders import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Selection import *
from Alphas.HistoricalReturnsAlphaModel import HistoricalReturnsAlphaModel
from QuantConnect.Algorithm.Framework.Execution import *
from QuantConnect.Algorithm.Framework.Risk import *
#from Portfolio.BlackLittermanOptimizationPortfolioConstructionModel import *
#from Portfolio.UnconstrainedMeanVariancePortfolioOptimizer import UnconstrainedMeanVariancePortfolioOptimizer
#from Risk.NullRiskManagementModel import NullRiskManagementModel
#from Alphas.EmaCrossAlphaModel import EmaCrossAlphaModel
#from Alphas.HistoricalReturnsAlphaModel import HistoricalReturnsAlphaModel
#from Alphas.MacdAlphaModel import MacdAlphaModel
#from Alphas.RsiAlphaModel import RsiAlphaModel
#from Alphas.ConstantAlphaModel import ConstantAlphaModel
from collections import deque
from AlgorithmImports import *
import numpy as np
import pandas as pd
from scipy.optimize import minimize
class MeanVarianceOptimizationAlgorithm(QCAlgorithmFramework):
# 1. INITIALIZATION
def Initialize(self):
self.SetStartDate(2021, 1, 1)
self.SetEndDate(2025, 4, 24)
self._cash = 100000
self.SetCash(self._cash)
#2.1. UNIVERSE SELECTION
self.UniverseSettings.Resolution = Resolution.Daily
symbols = [ # OUR INVESTMENT UNIVERSE
# FACTORS
Symbol.Create("USMV", SecurityType.Equity, Market.USA),
Symbol.Create("DGRO", SecurityType.Equity, Market.USA),
Symbol.Create("QUAL", SecurityType.Equity, Market.USA),
Symbol.Create("DVY", SecurityType.Equity, Market.USA),
Symbol.Create("MTUM", SecurityType.Equity, Market.USA),
Symbol.Create("VLUE", SecurityType.Equity, Market.USA),
Symbol.Create("EFAV", SecurityType.Equity, Market.USA),
Symbol.Create("EEMV", SecurityType.Equity, Market.USA),
Symbol.Create("IDV", SecurityType.Equity, Market.USA),
Symbol.Create("DVY", SecurityType.Equity, Market.USA),
Symbol.Create("IQLT", SecurityType.Equity, Market.USA),
# MARKET
Symbol.Create("SPY", SecurityType.Equity, Market.USA)]
self.AddUniverseSelection( ManualUniverseSelectionModel(symbols) )
# 2.2. OPTIMIZATION "STYLE"
self.minimum_weight = -1
self.maximum_weight = 1
self.SetWarmup(15)
# 2.3. ALPHA MODEL
self.SetAlpha( HistoricalReturnsAlphaModel(lookback = 5, resolution = Resolution.Daily) )
# 2.4. PORTFOLIO CONSTRUCTION MODEL
self.set_portfolio_construction(BlackLittermanOptimizationPortfolioConstructionModel(resolution = Resolution.Daily, tau=0.01))
#2.5. EXECUTION MODEL
self.SetExecution(ImmediateExecutionModel())
#2.6. BENCHMARKING FOR PLOTTING
self._benchmark = self.AddEquity("SPY", Resolution.Daily).Symbol
self._benchmarkInitial = self.History(self._benchmark, 1, Resolution.Daily)
self._benchmarkPrice = self._benchmarkInitial['close'][0]
def OnData(self,data):
# 2.7 PLOTTING
self.Plot("Relative Performance", "SPY", self._cash*self.Securities["SPY"].Close/self._benchmarkPrice)
self.Plot("Relative Performance", "Portfolio Value", self.Portfolio.TotalPortfolioValue)