| Overall Statistics |
|
Total Trades 124 Average Win 0.24% Average Loss -0.35% Compounding Annual Return 12.589% Drawdown 3.200% Expectancy 0.135 Net Profit 2.960% Sharpe Ratio 1.811 Loss Rate 32% Win Rate 68% Profit-Loss Ratio 0.68 Alpha 0.031 Beta 0.437 Annual Standard Deviation 0.054 Annual Variance 0.003 Information Ratio -0.945 Tracking Error 0.058 Treynor Ratio 0.224 Total Fees $124.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Securities.Option import OptionStrategies
from datetime import datetime, timedelta
### <summary>
### This algorithm demonstrate how to use Option Strategies (e.g. OptionStrategies.Straddle) helper classes to batch send orders for common strategies.
### It also shows how you can prefilter contracts easily based on strikes and expirations, and how you can inspect the
### option chain to pick a specific option contract to trade.
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="options" />
### <meta name="tag" content="option strategies" />
### <meta name="tag" content="filter selection" />
class BasicTemplateOptionStrategyAlgorithm(QCAlgorithm):
def Initialize(self):
# Set the cash we'd like to use for our backtest
self.SetCash(10000)
# Start and end dates for the backtest.
self.SetStartDate(2017,1,1)
self.SetEndDate(2017,4,1)
# Add assets you'd like to see
option = self.AddOption("SPY")
self.option_symbol = option.Symbol
self.AddEquity("SPY", Resolution.Minute)
# set our strike/expiry filter for this option chain
#option.SetFilter(-2, +2, timedelta(2), timedelta(30))
option.SetFilter(lambda universe: universe.IncludeWeeklys().Strikes(-2, 2).Expiration(timedelta(0), timedelta(30)))
# use the underlying equity as the benchmark
self.SetBenchmark("SPY")
self.Schedule.On(self.DateRules.EveryDay("SPY"), \
self.TimeRules.AfterMarketOpen("SPY", 30), \
Action(self.MarketOpenPut))
self.Schedule.On(self.DateRules.EveryDay("SPY"), \
self.TimeRules.BeforeMarketClose("SPY", 10), \
Action(self.MarketClose))
def OnData(self,slice):
if self.Portfolio.Invested:
return
self.option_data = slice
def MarketOpenCall(self):
self.Log(self.option_data.OptionChains)
for i in self.option_data.OptionChains:
self.Log("Option Chain")
#self.Log(i)
#if i.Key != self.underlyingsymbol: continue
chain = i.Value
call = [x for x in chain if x.Right == 0]
# sorted the contracts according to their expiration dates and choose the ATM options
contracts = sorted(sorted(call, \
key = lambda x: abs(chain.Underlying.Price - x.Strike)), \
key = lambda x: x.Expiry)
self.Log(contracts)
if len(contracts) == 0: continue
self.contract = contracts[0]
self.MarketOrder(self.contract.Symbol, 1)
return
def MarketOpenPut(self):
self.Log(self.option_data.OptionChains)
for i in self.option_data.OptionChains:
#if i.Key != self.underlyingsymbol: continue
chain = i.Value
put = [x for x in chain if x.Right == 1]
# sorted the contracts according to their expiration dates and choose the ATM options
contracts = sorted(sorted(put, \
key = lambda x: abs(chain.Underlying.Price - x.Strike)), \
key = lambda x: x.Expiry)
if len(contracts) == 0: continue
self.contract = contracts[0]
self.MarketOrder(self.contract.Symbol, -1)
self.stoplossorder = self.StopMarketOrder(self.contract.Symbol, self.contract.BidPrice+1, self.contract.BidPrice+1.1)
return
def MarketClose(self):
#if self.contract is not None and self.Portfolio[self.contract].Invested:
# self.Sell(self.contract, 1)
self.Liquidate()
self.stoplossorder.Cancel()
def OnOrderEvent(self, orderEvent):
self.Log(str(orderEvent))