| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0.979 Tracking Error 0.174 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# Plot PRICE, LSMA, PSAR of LSMA
# ---------------------------
STOCK = "QQQ"; PERIOD = 21;
# ---------------------------
class HmaPsarExtension(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2022, 1, 1)
self.SetEndDate(2022, 4, 14)
res = Resolution.Daily
self.stock = self.AddEquity(STOCK, res).Symbol
self.SetWarmUp(2*PERIOD, res)
self.lsma = self.LSMA(self.stock, PERIOD, res)
self.lsma.Updated += self.parabolic_handler
self.Parabolic_lsma = ParabolicStopAndReverse(0.02, 0.02, 0.2)
def parabolic_handler(self, sender, bar):
if self.lsma.IsReady:
lsma = self.lsma.Current.Value
trade_bar = TradeBar(bar.EndTime, self.stock, lsma, lsma, lsma, lsma, 0)
self.Parabolic_lsma.Update(trade_bar)
def OnData(self, data):
if self.IsWarmingUp or not self.Parabolic_lsma: return
price = self.Securities[self.stock].Price
self.Plot(self.stock, "Price", price)
self.Plot(self.stock, "LSMA", self.lsma.Current.Value)
self.Plot(self.stock, "Parabolic of LSMA", self.Parabolic_lsma.Current.Value)