| Overall Statistics |
|
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $1.71 |
class MyMainAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019, 8, 2) # Set Start Date
self.SetEndDate(2019,8,4)
self.SetCash(100000) # Set Strategy Cash
self.AddEquity("SPY", Resolution.Minute)
self.myStocks = ['GOOG','AAPL']
self.maxPain = 400.00
self.maxProfit = 0.00
self.sub = MySubModule(self)
def printMaxPain(self):
self.Log("Max pain is {} " .format(self.maxPain))
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
self.Log("before subroutine value maxProfit {}" . format(self.maxProfit))
self.sub.Update()
self.Log("after subroutine value maxProfit {}" . format(self.maxProfit))
if not self.Portfolio.Invested:
self.SetHoldings("SPY", 1)
class MySubModule(AlphaModel):
def __init__(self,algorithm):
self.algo = algorithm
self.algo.maxProfit = 100.00
def Update(self):
self.algo.printMaxPain()
#self.algo.maxProfit = 100.00