Overall Statistics
Total Orders
2
Average Win
0%
Average Loss
0%
Compounding Annual Return
13.298%
Drawdown
7.000%
Expectancy
0
Start Equity
10000000
End Equity
10061759.4
Net Profit
0.618%
Sharpe Ratio
0.326
Sortino Ratio
0.572
Probabilistic Sharpe Ratio
44.235%
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
1.445
Beta
-2.461
Annual Standard Deviation
0.327
Annual Variance
0.107
Information Ratio
-0.983
Tracking Error
0.445
Treynor Ratio
-0.043
Total Fees
$735.30
Estimated Strategy Capacity
$2900000000.00
Lowest Capacity Asset
NQ Y6URRFPZ86BL
Portfolio Turnover
37.84%
# region imports
from AlgorithmImports import *
# endregion

class FocusedFluorescentYellowGoshawk(QCAlgorithm):

    def initialize(self):
        self.set_start_date(2023, 1, 7)
        self.set_end_date(2023, 1, 24)
        self.set_cash(10000000)
        tickers = [
            Futures.Indices.NASDAQ_100_E_MINI,
            Futures.Indices.SP_500_E_MINI
        ]
        self._futures = []
        for ticker in tickers:
            future = self.add_future(ticker)
            self.log(f"{future.symbol}: {future.symbol_properties.contract_multiplier}")
            self._futures.append(future)
    
    def on_data(self, data):
        if self.portfolio.invested:
            return
        usd_per_position = 1_000_000
        self.market_order(self._futures[0].mapped, int(usd_per_position / self.securities[self._futures[0].mapped].price))
        self.market_order(self._futures[1].mapped, -int(usd_per_position / self.securities[self._futures[1].mapped].price))