| Overall Statistics |
|
Total Trades 2 Average Win 7.59% Average Loss 0% Compounding Annual Return 7.848% Drawdown 1.300% Expectancy 0 Net Profit 7.796% Sharpe Ratio 2.66 Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha 0.093 Beta -0.889 Annual Standard Deviation 0.028 Annual Variance 0.001 Information Ratio 1.959 Tracking Error 0.028 Treynor Ratio -0.085 Total Fees $6.03 |
import numpy as np
### <summary>
### Basic template algorithm simply initializes the date range and cash. This is a skeleton
### framework you can use for designing an algorithm.
### </summary>
class BasicTemplateAlgorithm(QCAlgorithm):
'''Basic template algorithm simply initializes the date range and cash'''
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2017,1, 1) #Set Start Date
self.SetEndDate(2017,12,31) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Set Benchmark SPY
self.SetBenchmark("SPY")
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("SPY")
self.Schedule.On(self.DateRules.On(2017, 9, 27), self.TimeRules.At(10, 0), Action(self.buy))
self.Schedule.On(self.DateRules.On(2017, 12, 21), self.TimeRules.At(10, 0), Action(self.sell))
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
pass
def buy(self):
# place buy order
self.SetHoldings("SPY", 1)
def sell(self):
# place sell order
self.SetHoldings("SPY", -1)