| Overall Statistics |
|
Total Trades 2303 Average Win 0.30% Average Loss -0.16% Compounding Annual Return -38.082% Drawdown 70.800% Expectancy -0.620 Net Profit -69.519% Sharpe Ratio -1.947 Probabilistic Sharpe Ratio 0.000% Loss Rate 87% Win Rate 13% Profit-Loss Ratio 1.94 Alpha -0.405 Beta 0.291 Annual Standard Deviation 0.19 Annual Variance 0.036 Information Ratio -1.984 Tracking Error 0.246 Treynor Ratio -1.27 Total Fees $0.00 |
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Logging")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Logging import Log
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import *
from QuantConnect.Orders import OrderStatus
from QuantConnect.Orders.Fees import ConstantFeeModel
from QuantConnect.Algorithm.Framework.Risk import *
from QuantConnect.Algorithm.Framework.Execution import *
from QuantConnect.Algorithm.Framework.Portfolio import *
from QuantConnect.Algorithm.Framework.Selection import *
import pandas as pd
from datetime import timedelta
from enum import Enum
class GasAndCrudeOilEnergyCorrelationAlpha(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1) #Set Start Date
self.SetCash(100000) #Set Strategy Cash
natural_gas = [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in ['UNG','BOIL','FCG']]
crude_oil = [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in ['USO','UCO','DBO']]
## Set Universe Selection
self.UniverseSettings.Resolution = Resolution.Minute
self.SetUniverseSelection( ManualUniverseSelectionModel(natural_gas + crude_oil) )
self.SetSecurityInitializer(lambda security: security.SetFeeModel(ConstantFeeModel(0)))
## Custom Alpha Model
self.SetAlpha(RsiAlphaModel())
## Equal-weight our positions, in this case 100% in USO
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(resolution = Resolution.Minute))
## Immediate Execution Fill Model
self.SetExecution(CustomExecutionModel())
## Null Risk-Management Model
self.SetRiskManagement(NullRiskManagementModel())
def OnOrderEvent(self, orderEvent):
if orderEvent.Status == OrderStatus.Filled:
self.Debug(f'Purchased Stock: {orderEvent.Symbol}')
def OnEndOfAlgorithm(self):
for kvp in self.Portfolio:
if kvp.Value.Invested:
self.Log(f'Invested in: {kvp.Key}')
class RsiAlphaModel(AlphaModel):
'''Uses Wilder's RSI to create insights.
Using default settings, a cross over below 30 or above 70 will trigger a new insight.'''
def __init__(self,
period = 14,
resolution = Resolution.Daily):
'''Initializes a new instance of the RsiAlphaModel class
Args:
period: The RSI indicator period'''
self.period = period
self.resolution = resolution
self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), period)
self.symbolDataBySymbol ={}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{})'.format(self.__class__.__name__, period, resolutionString)
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
rsi = symbolData.RSI
#add bb indicator and close price
bb = symbolData.BB
close = symbolData.Close
previous_state = symbolData.State
state = self.GetState(rsi, previous_state, bb, close)
#add bb indicator
if state != previous_state and rsi.IsReady and bb.IsReady:
if state == State.TrippedLow:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Up))
if state == State.TrippedHigh:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Down))
symbolData.State = state
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Cleans out old security data and initializes the RSI for any newly added securities.
Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
symbols = [ x.Symbol for x in changes.RemovedSecurities ]
if len(symbols) > 0:
for subscription in algorithm.SubscriptionManager.Subscriptions:
if subscription.Symbol in symbols:
self.symbolDataBySymbol.pop(subscription.Symbol, None)
subscription.Consolidators.Clear()
# initialize data for added securities
addedSymbols = [ x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol]
if len(addedSymbols) == 0: return
history = algorithm.History(addedSymbols, self.period, self.resolution)
for symbol in addedSymbols:
rsi = algorithm.RSI(symbol, self.period, MovingAverageType.Wilders, self.resolution)
#add bb indicator and close price
bb = algorithm.BB(symbol, self.period, 3, MovingAverageType.Wilders, self.resolution)
close = algorithm.Securities[symbol].Close
if not history.empty:
ticker = SymbolCache.GetTicker(symbol)
if ticker not in history.index.levels[0]:
Log.Trace(f'RsiAlphaModel.OnSecuritiesChanged: {ticker} not found in history data frame.')
continue
for tuple in history.loc[ticker].itertuples():
rsi.Update(tuple.Index, tuple.close)
#add bb indicator
bb.Update(tuple.Index, tuple.close)
#add bb indicator and close price
self.symbolDataBySymbol[symbol] = SymbolData(symbol, rsi, bb, close)
def GetState(self, rsi, previous, bb, close):
''' Determines the new state. This is basically cross-over detection logic that
includes considerations for bouncing using the configured bounce tolerance.'''
#update new condition
if close > 2*bb.UpperBand.Current.Value:
return State.TrippedHigh
if rsi.Current.Value < 30:
return State.TrippedLow
if previous == State.TrippedLow:
if rsi.Current.Value > 35:
return State.Middle
if previous == State.TrippedHigh:
if rsi.Current.Value < 65:
return State.Middle
return previous
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, rsi, bb, close):
self.Symbol = symbol
self.RSI = rsi
#add bb indicator and close price
self.BB = bb
self.Close = close
self.State = State.Middle
class State(Enum):
'''Defines the state. This is used to prevent signal spamming and aid in bounce detection.'''
TrippedLow = 0
Middle = 1
TrippedHigh = 2
class CustomExecutionModel(ExecutionModel):
'''Provides an implementation of IExecutionModel that immediately submits market orders to achieve the desired portfolio targets'''
def __init__(self):
'''Initializes a new instance of the ImmediateExecutionModel class'''
self.targetsCollection = PortfolioTargetCollection()
self.previous_symbol = None
def Execute(self, algorithm, targets):
'''Immediately submits orders for the specified portfolio targets.
Args:
algorithm: The algorithm instance
targets: The portfolio targets to be ordered'''
self.targetsCollection.AddRange(targets)
for target in self.targetsCollection.OrderByMarginImpact(algorithm):
open_quantity = sum([x.Quantity for x in algorithm.Transactions.GetOpenOrders(target.Symbol)])
existing = algorithm.Securities[target.Symbol].Holdings.Quantity + open_quantity
quantity = target.Quantity - existing
## Liquidate positions in Crude Oil ETF that is no longer part of the highest-correlation pair
if (str(target.Symbol) != str(self.previous_symbol)) and (self.previous_symbol is not None):
algorithm.Liquidate(self.previous_symbol)
if quantity != 0:
algorithm.MarketOrder(target.Symbol, quantity)
self.previous_symbol = target.Symbol
self.targetsCollection.ClearFulfilled(algorithm)