| Overall Statistics |
|
Total Trades 4 Average Win 0% Average Loss 0.00% Compounding Annual Return 119.637% Drawdown 0.800% Expectancy -1 Net Profit 1.011% Sharpe Ratio 16.803 Loss Rate 100% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.404 Beta 0.293 Annual Standard Deviation 0.038 Annual Variance 0.001 Information Ratio -2.741 Tracking Error 0.056 Treynor Ratio 2.168 Total Fees $5.23 |
#
# QuantConnect Basic Template:
# Fundamentals to using a QuantConnect algorithm.
#
# You can view the QCAlgorithm base class on Github:
# https://github.com/QuantConnect/Lean/tree/master/Algorithm
#
import numpy as np
from algorithm1 import *
class Control(QCAlgorithm):
def Initialize(self):
# Set the cash we'd like to use for our backtest
# This is ignored in live trading
self.SetCash(100000)
# Start and end dates for the backtest.
# These are ignored in live trading.
self.SetStartDate(2017,1,1)
self.SetEndDate(2017,1,5)
# Add assets you'd like to see
self.spy = self.AddEquity("SPY", Resolution.Minute).Symbol
self.a1 = Algo1(self)
self.a1.Initialize()
def OnData(self, slice):
self.a1.Rebalance()
self.Debug("test control")
# Simple buy and hold template
self.SetHoldings(self.spy, .5)class Algo1(object):
def __init__(self, control_self):
self.control_self = control_self
def Initialize(self):
self.control_self.Debug("initialize algo1")
# Add assets you'd like to see
self.control_self.qqq = self.control_self.AddEquity("QQQ", Resolution.Minute).Symbol
def Rebalance(self):
self.control_self.Debug("test algorithm1")
# Simple buy and hold template
self.control_self.SetHoldings(self.control_self.qqq, .5)