| Overall Statistics |
|
Total Orders 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Start Equity 100000 End Equity 100000 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
# region imports
from AlgorithmImports import *
# endregion
class GeekyTanSardine(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2024, 10, 1)
self.SetEndDate(2024, 10, 1)
self.SetCash(100000)
self.AddEquity("AAPL", Resolution.Daily)
self.accessDate = 0
self._universe = self.add_universe(self.MyCoarseFilterFunction)
self.symbolDict = {}
def MyCoarseFilterFunction(self, coarse):
filtered = [f for f in coarse if f.has_fundamental_data]#and f.price > 10 and f.market_cap > 300000000]
# sortedByVolume = sorted(filtered, key=lambda f: f.market_cap, reverse=True) #[:self.universeSize]
return [f.Symbol for f in filtered]
def OnData(self, data: Slice):
if self.Time.day != self.accessDate:
for symbol, trade_bar in data.bars.items():
# if symbol.value == "AAPL":
self.Debug(symbol)
# history = self.History(symbol, 252, Resolution.Daily)
# count = 0
# rsTotal = 0
# for time, row in history.loc[symbol].iterrows():
# if count == 63 or count == 126 or count == 189 or count == 252:
# rsTotal = rsTotal + (trade_bar.close/ row['close'])
# self.debug("count : {} , rstotal : {} ".format(count, rsTotal))
# count+=1
# self.symbolDict[symbol] = rsTotal
self.accessDate = self.Time.day
# for symbol, tradeBar in data.bars.items():
# if symbol.value == "AAPL":
#